Skip to content

Qiming-Huang/ssformer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

1351a07 · Dec 1, 2022

History

13 Commits
Apr 22, 2022
Apr 22, 2022
Apr 22, 2022
Apr 22, 2022
Apr 22, 2022
Dec 1, 2022
Jul 26, 2022
Apr 22, 2022
Apr 22, 2022

Repository files navigation

Stepwise Feature Fusion: Local Guides Global

This is the official implementation for Stepwise Feature Fusion: Local Guides Global

SSformer

PWC PWC PWC PWC

packages

  • Please see requirements.txt

Dataset

  • The dataset we used can be download from here

Checkpoints

  • The checkpoint for ssformer-S can be downloaded from here
  • The checkpoint for ssformer-L can be downloaded from here

Usage

Test

  1. modified configs/ssformer-S.yaml
    • dataset set to your data path
    • test.checkpoint_save_path : path to your downloaded checkpoint
  2. run python test.py configs/ssformer-S.yaml

Train

  1. modified configs/train.yaml
    • model.pretrained_path : mit pre-trained checkpoint path
    • other : path to save your training checkpoint and log file
  2. run python train.py configs/train.yaml

Citation

Wang, J., Huang, Q., Tang, F., Meng, J., Su, J., Song, S. (2022). 
Stepwise Feature Fusion: Local Guides Global. 
In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) 
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. 
MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. 
https://doi.org/10.1007/978-3-031-16437-8_11

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages