Skip to content

QinchengZhang/PathologySegmentation

Repository files navigation

Pathology segmentation implement with PyTorch.

Network architecture: U-Net, Attention U-Net, R2 U-Net, R2 Attention U-Net, HSU-Net

Segmentation Demo Result:

对比模式 Segmentation

合并模式 Segmentation


Dependencies

见各模块的Dependencies

文件结构

│  README.MD
│
├─Preprocessing
│  ├─ColorNormalization
|  |
│  |    
│  ├─DataAugmentation
│  │
|  |        
│  └─DataProcess
│          
├─SegmentationViewer
│
│          
└─Training
            

Thanks

The birth of this project is inseparable from the following projects:

  • Pytorch-UNet:PyTorch implementation of the U-Net for image semantic segmentation with high quality images

  • PaddleSeg: PaddleSeg是基于PaddlePaddle开发的端到端图像分割开发套件,覆盖了DeepLabv3+, U-Net, ICNet, PSPNet, HRNet, Fast-SCNN等主流分割网络。通过模块化的设计,以配置化方式驱动模型组合,帮助开发者更便捷地完成从训练到部署的全流程图像分割应用。

  • VisualDL: VisualDL是飞桨可视化分析工具,以丰富的图表呈现训练参数变化趋势、模型结构、数据样本、高维数据分布等。可帮助用户更清晰直观地理解深度学习模型训练过程及模型结构,进而实现高效的模型优化。

  • Fast_WSI_Color_Norm: Codes for Fast GPU-Enabled Color Normalization of Whole Slide Images in Digital Pathology

  • ASAP: ASAP is an open source platform for visualizing, annotating and automatically analyzing whole-slide histopathology images.


About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published