To reproduce our simulation benchmark results, install our conda environment on a Linux machine with Nvidia GPU. On Ubuntu 20.04 you need to install the following apt packages for mujoco:
$ sudo apt install -y libosmesa6-dev libgl1-mesa-glx libglfw3 patchelf
We recommend Mambaforge instead of the standard anaconda distribution for faster installation:
$ mamba env create -f conda_environment.yaml
but you can use conda as well:
$ conda env create -f conda_environment.yaml
The conda_environment_macos.yaml
file is only for development on MacOS and does not have full support for benchmarks.
Under the repo root, create data subdirectory:
[diffusion_policy]$ mkdir data && cd data
Download the corresponding zip file from https://diffusion-policy.cs.columbia.edu/data/training/
[data]$ wget https://diffusion-policy.cs.columbia.edu/data/training/pusht.zip
Extract training data:
[data]$ unzip pusht.zip && rm -f pusht.zip && cd ..
Grab config file for the corresponding experiment:
[diffusion_policy]$ wget -O image_pusht_diffusion_policy_cnn.yaml https://diffusion-policy.cs.columbia.edu/data/experiments/image/pusht/diffusion_policy_cnn/config.yaml
Activate conda environment and login to wandb (if you haven't already).
[diffusion_policy]$ conda activate robodiff
(robodiff)[diffusion_policy]$ wandb login
Launch training with seed 42 on GPU 0.
(robodiff)[diffusion_policy]$ python train.py --config-dir=. --config-name=image_pusht_diffusion_policy_cnn.yaml training.seed=42 training.device=cuda:0 hydra.run.dir='data/outputs/${now:%Y.%m.%d}/${now:%H.%M.%S}_${name}_${task_name}'
This will create a directory in format data/outputs/yyyy.mm.dd/hh.mm.ss_<method_name>_<task_name>
where configs, logs and checkpoints are written to. The policy will be evaluated every 50 epochs with the success rate logged as test/mean_score
on wandb, as well as videos for some rollouts.
(robodiff)[diffusion_policy]$ tree data/outputs/2023.03.01/20.02.03_train_diffusion_unet_hybrid_pusht_image -I wandb
data/outputs/2023.03.01/20.02.03_train_diffusion_unet_hybrid_pusht_image
├── checkpoints
│ ├── epoch=0000-test_mean_score=0.134.ckpt
│ └── latest.ckpt
├── .hydra
│ ├── config.yaml
│ ├── hydra.yaml
│ └── overrides.yaml
├── logs.json.txt
├── media
│ ├── 2k5u6wli.mp4
│ ├── 2kvovxms.mp4
│ ├── 2pxd9f6b.mp4
│ ├── 2q5gjt5f.mp4
│ ├── 2sawbf6m.mp4
│ └── 538ubl79.mp4
└── train.log
3 directories, 13 files
Launch local ray cluster. For large scale experiments, you might want to setup an AWS cluster with autoscaling. All other commands remain the same.
(robodiff)[diffusion_policy]$ export CUDA_VISIBLE_DEVICES=0,1,2 # select GPUs to be managed by the ray cluster
(robodiff)[diffusion_policy]$ ray start --head --num-gpus=3
Launch a ray client which will start 3 training workers (3 seeds) and 1 metrics monitor worker.
(robodiff)[diffusion_policy]$ python ray_train_multirun.py --config-dir=. --config-name=image_pusht_diffusion_policy_cnn.yaml --seeds=42,43,44 --monitor_key=test/mean_score -- multi_run.run_dir='data/outputs/${now:%Y.%m.%d}/${now:%H.%M.%S}_${name}_${task_name}' multi_run.wandb_name_base='${now:%Y.%m.%d-%H.%M.%S}_${name}_${task_name}'
In addition to the wandb log written by each training worker individually, the metrics monitor worker will log to wandb project diffusion_policy_metrics
for the metrics aggregated from all 3 training runs. Local config, logs and checkpoints will be written to data/outputs/yyyy.mm.dd/hh.mm.ss_<method_name>_<task_name>
in a directory structure identical to our training logs:
(robodiff)[diffusion_policy]$ tree data/outputs/2023.03.01/22.13.58_train_diffusion_unet_hybrid_pusht_image -I 'wandb|media'
data/outputs/2023.03.01/22.13.58_train_diffusion_unet_hybrid_pusht_image
├── config.yaml
├── metrics
│ ├── logs.json.txt
│ ├── metrics.json
│ └── metrics.log
├── train_0
│ ├── checkpoints
│ │ ├── epoch=0000-test_mean_score=0.174.ckpt
│ │ └── latest.ckpt
│ ├── logs.json.txt
│ └── train.log
├── train_1
│ ├── checkpoints
│ │ ├── epoch=0000-test_mean_score=0.131.ckpt
│ │ └── latest.ckpt
│ ├── logs.json.txt
│ └── train.log
└── train_2
├── checkpoints
│ ├── epoch=0000-test_mean_score=0.105.ckpt
│ └── latest.ckpt
├── logs.json.txt
└── train.log
7 directories, 16 files
Download a checkpoint from the published training log folders, such as https://diffusion-policy.cs.columbia.edu/data/experiments/low_dim/pusht/diffusion_policy_cnn/train_0/checkpoints/epoch=0550-test_mean_score=0.969.ckpt.
Run the evaluation script:
(robodiff)[diffusion_policy]$ python eval.py --checkpoint data/0550-test_mean_score=0.969.ckpt --output_dir data/pusht_eval_output --device cuda:0
This will generate the following directory structure:
(robodiff)[diffusion_policy]$ tree data/pusht_eval_output
data/pusht_eval_output
├── eval_log.json
└── media
├── 1fxtno84.mp4
├── 224l7jqd.mp4
├── 2fo4btlf.mp4
├── 2in4cn7a.mp4
├── 34b3o2qq.mp4
└── 3p7jqn32.mp4
1 directory, 7 files
eval_log.json
contains metrics that is logged to wandb during training:
(robodiff)[diffusion_policy]$ cat data/pusht_eval_output/eval_log.json
{
"test/mean_score": 0.9150393806777066,
"test/sim_max_reward_4300000": 1.0,
"test/sim_max_reward_4300001": 0.9872969750774386,
...
"train/sim_video_1": "data/pusht_eval_output//media/2fo4btlf.mp4"
}