forked from tensorflow/quantum
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Create spsa_minimizer.py * Update spsa_minimizer.py * Update __init__.py * Create spsa_minimizer_test.py * Update __init__.py * Update spsa_minimizer.py * Update spsa_minimizer.py * Update spsa_minimizer.py * Update spsa_minimizer.py * Update spsa_minimizer.py * Update spsa_minimizer_test.py * Update spsa_minimizer.py * Update spsa_minimizer.py * Update spsa_minimizer_test.py * Update spsa_minimizer.py * Update spsa_minimizer.py * Update spsa_minimizer.py * Update spsa_minimizer.py * Update spsa_minimizer.py * Update import_test.py * Update BUILD * Update BUILD * Update build_docs.py * Update spsa_minimizer.py * Update spsa_minimizer_test.py * Update spsa_minimizer_test.py * Update spsa_minimizer.py * Update spsa_minimizer.py * Update spsa_minimizer_test.py * Update spsa_minimizer.py * Update spsa_minimizer_test.py * Update spsa_minimizer.py * Update rotosolve_minimizer_test.py * Update spsa_minimizer_test.py * Update spsa_minimizer_test.py * Update rotosolve_minimizer_test.py * Update spsa_minimizer_test.py * Update spsa_minimizer.py Co-authored-by: MichaelBroughton <[email protected]>
- Loading branch information
1 parent
8cda8f0
commit 7ff5f20
Showing
8 changed files
with
575 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,280 @@ | ||
# Copyright 2021 The TensorFlow Quantum Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
"""The SPSA minimization algorithm""" | ||
import collections | ||
import tensorflow as tf | ||
import numpy as np | ||
|
||
|
||
def prefer_static_shape(x): | ||
"""Return static shape of tensor `x` if available, | ||
else `tf.shape(x)`. | ||
Args: | ||
x: `tf.Tensor` (already converted). | ||
Returns: | ||
Numpy array (if static shape is obtainable), else `tf.Tensor`. | ||
""" | ||
return prefer_static_value(tf.shape(x)) | ||
|
||
|
||
def prefer_static_value(x): | ||
"""Return static value of tensor `x` if available, else `x`. | ||
Args: | ||
x: `tf.Tensor` (already converted). | ||
Returns: | ||
Numpy array (if static value is obtainable), else `tf.Tensor`. | ||
""" | ||
static_x = tf.get_static_value(x) | ||
if static_x is not None: | ||
return static_x | ||
return x | ||
|
||
|
||
SPSAOptimizerResults = collections.namedtuple( | ||
'SPSAOptimizerResults', | ||
[ | ||
'converged', | ||
# Scalar boolean tensor indicating whether the minimum | ||
# was found within tolerance. | ||
'num_iterations', | ||
# The number of iterations of the SPSA update. | ||
'num_objective_evaluations', | ||
# The total number of objective | ||
# evaluations performed. | ||
'position', | ||
# A tensor containing the last argument value found | ||
# during the search. If the search converged, then | ||
# this value is the argmin of the objective function. | ||
# A tensor containing the value of the objective from | ||
# previous iteration | ||
'objective_value_previous_iteration', | ||
# Save the evaluated value of the objective function | ||
# from the previous iteration | ||
'objective_value', | ||
# A tensor containing the value of the objective | ||
# function at the `position`. If the search | ||
# converged, then this is the (local) minimum of | ||
# the objective function. | ||
'tolerance', | ||
# Define the stop criteria. Iteration will stop when the | ||
# objective value difference between two iterations is | ||
# smaller than tolerance | ||
'lr', | ||
# Specifies the learning rate | ||
'alpha', | ||
# Specifies scaling of the learning rate | ||
'perturb', | ||
# Specifies the size of the perturbations | ||
'gamma', | ||
# Specifies scaling of the size of the perturbations | ||
'blocking', | ||
# If true, then the optimizer will only accept updates that improve | ||
# the objective function. | ||
'allowed_increase' | ||
# Specifies maximum allowable increase in objective function | ||
# (only applies if blocking is true). | ||
]) | ||
|
||
|
||
def _get_initial_state(initial_position, tolerance, expectation_value_function, | ||
lr, alpha, perturb, gamma, blocking, allowed_increase): | ||
"""Create SPSAOptimizerResults with initial state of search.""" | ||
init_args = { | ||
"converged": tf.Variable(False), | ||
"num_iterations": tf.Variable(0), | ||
"num_objective_evaluations": tf.Variable(0), | ||
"position": tf.Variable(initial_position), | ||
"objective_value": tf.Variable(0.), | ||
"objective_value_previous_iteration": tf.Variable(np.inf), | ||
"tolerance": tolerance, | ||
"lr": tf.Variable(lr), | ||
"alpha": tf.Variable(alpha), | ||
"perturb": tf.Variable(perturb), | ||
"gamma": tf.Variable(gamma), | ||
"blocking": tf.Variable(blocking), | ||
"allowed_increase": tf.Variable(allowed_increase) | ||
} | ||
return SPSAOptimizerResults(**init_args) | ||
|
||
|
||
def minimize(expectation_value_function, | ||
initial_position, | ||
tolerance=1e-5, | ||
max_iterations=200, | ||
alpha=0.602, | ||
lr=1.0, | ||
perturb=1.0, | ||
gamma=0.101, | ||
blocking=False, | ||
allowed_increase=0.5, | ||
seed=None, | ||
name=None): | ||
"""Applies the SPSA algorithm. | ||
The SPSA algorithm can be used to minimize a noisy function. See: | ||
[SPSA website](https://www.jhuapl.edu/SPSA/) | ||
Usage: | ||
Here is an example of optimize a function which consists the | ||
summation of a few quadratics. | ||
>>> n = 5 # Number of quadractics | ||
>>> coefficient = tf.random.uniform(minval=0, maxval=1, shape=[n]) | ||
>>> min_value = 0 | ||
>>> func = func = lambda x : tf.math.reduce_sum(np.power(x, 2) * \ | ||
coefficient) | ||
>>> # Optimize the function with SPSA, start with random parameters | ||
>>> result = tfq.optimizers.spsa_minimize(func, np.random.random(n)) | ||
>>> result.converged | ||
tf.Tensor(True, shape=(), dtype=bool) | ||
>>> result.objective_value | ||
tf.Tensor(0.0013349084, shape=(), dtype=float32) | ||
Args: | ||
expectation_value_function: Python callable that accepts a real | ||
valued tf.Tensor with shape [n] where n is the number of function | ||
parameters. The return value is a real `tf.Tensor` Scalar | ||
(matching shape `[1]`). | ||
initial_position: Real `tf.Tensor` of shape `[n]`. The starting | ||
point, or points when using batching dimensions, of the search | ||
procedure. At these points the function value and the gradient | ||
norm should be finite. | ||
tolerance: Scalar `tf.Tensor` of real dtype. Specifies the tolerance | ||
for the procedure. If the supremum norm between two iteration | ||
vector is below this number, the algorithm is stopped. | ||
lr: Scalar `tf.Tensor` of real dtype. Specifies the learning rate | ||
alpha: Scalar `tf.Tensor` of real dtype. Specifies scaling of the | ||
learning rate. | ||
perturb: Scalar `tf.Tensor` of real dtype. Specifies the size of the | ||
perturbations. | ||
gamma: Scalar `tf.Tensor` of real dtype. Specifies scaling of the | ||
size of the perturbations. | ||
blocking: Boolean. If true, then the optimizer will only accept | ||
updates that improve the objective function. | ||
allowed_increase: Scalar `tf.Tensor` of real dtype. Specifies maximum | ||
allowable increase in objective function (only applies if blocking | ||
is true). | ||
seed: (Optional) Python integer. Used to create a random seed for the | ||
perturbations. | ||
name: (Optional) Python `str`. The name prefixed to the ops created | ||
by this function. If not supplied, the default name 'minimize' | ||
is used. | ||
Returns: | ||
optimizer_results: A SPSAOptimizerResults object contains the | ||
result of the optimization process. | ||
""" | ||
|
||
with tf.name_scope(name or 'minimize'): | ||
if seed is not None: | ||
generator = tf.random.Generator.from_seed(seed) | ||
else: | ||
generator = tf.random | ||
|
||
initial_position = tf.convert_to_tensor(initial_position, | ||
name='initial_position', | ||
dtype='float32') | ||
dtype = initial_position.dtype.base_dtype | ||
tolerance = tf.convert_to_tensor(tolerance, | ||
dtype=dtype, | ||
name='grad_tolerance') | ||
max_iterations = tf.convert_to_tensor(max_iterations, | ||
name='max_iterations') | ||
|
||
lr_init = tf.convert_to_tensor(lr, name='initial_a', dtype='float32') | ||
perturb_init = tf.convert_to_tensor(perturb, | ||
name='initial_c', | ||
dtype='float32') | ||
|
||
def _spsa_once(state): | ||
"""Caclulate single SPSA gradient estimation | ||
Args: | ||
state: A SPSAOptimizerResults object stores the | ||
current state of the minimizer. | ||
Returns: | ||
states: A list which the first element is the new state | ||
""" | ||
delta_shift = tf.cast( | ||
2 * generator.uniform(shape=state.position.shape, | ||
minval=0, | ||
maxval=2, | ||
dtype=tf.int32) - 1, tf.float32) | ||
v_m = expectation_value_function(state.position - | ||
state.perturb * delta_shift) | ||
v_p = expectation_value_function(state.position + | ||
state.perturb * delta_shift) | ||
|
||
gradient_estimate = (v_p - v_m) / (2 * state.perturb) * delta_shift | ||
update = state.lr * gradient_estimate | ||
|
||
state.num_objective_evaluations.assign_add(2) | ||
|
||
current_obj = expectation_value_function(state.position - update) | ||
if state.objective_value_previous_iteration + \ | ||
state.allowed_increase >= current_obj or not state.blocking: | ||
state.position.assign(state.position - update) | ||
state.objective_value_previous_iteration.assign( | ||
state.objective_value) | ||
state.objective_value.assign(current_obj) | ||
|
||
return [state] | ||
|
||
# The `state` here is a `SPSAOptimizerResults` tuple with | ||
# values for the current state of the algorithm computation. | ||
def _cond(state): | ||
"""Continue if iterations remain and stopping condition | ||
is not met.""" | ||
return (state.num_iterations < max_iterations) \ | ||
and (not state.converged) | ||
|
||
def _body(state): | ||
"""Main optimization loop.""" | ||
new_lr = lr_init / ( | ||
(tf.cast(state.num_iterations + 1, tf.float32) + | ||
0.01 * tf.cast(max_iterations, tf.float32))**state.alpha) | ||
new_perturb = perturb_init / (tf.cast(state.num_iterations + 1, | ||
tf.float32)**state.gamma) | ||
|
||
state.lr.assign(new_lr) | ||
state.perturb.assign(new_perturb) | ||
|
||
_spsa_once(state) | ||
state.num_iterations.assign_add(1) | ||
state.converged.assign( | ||
tf.abs(state.objective_value - | ||
state.objective_value_previous_iteration) < | ||
state.tolerance) | ||
return [state] | ||
|
||
initial_state = _get_initial_state(initial_position, tolerance, | ||
expectation_value_function, lr, | ||
alpha, perturb, gamma, blocking, | ||
allowed_increase) | ||
|
||
initial_state.objective_value.assign( | ||
tf.cast(expectation_value_function(initial_state.position), | ||
tf.float32)) | ||
|
||
return tf.while_loop(cond=_cond, | ||
body=_body, | ||
loop_vars=[initial_state], | ||
parallel_iterations=1)[0] |
Oops, something went wrong.