forked from LSH9832/edgeyolo
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
147 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
import os.path | ||
|
||
import torch | ||
import cv2 | ||
|
||
import torch.multiprocessing as mp | ||
from torch import distributed as dist | ||
import torch.backends.cudnn as cudnn | ||
from datetime import timedelta | ||
from loguru import logger | ||
from edgeyolo.train.trainer import Trainer as Evaluator | ||
|
||
|
||
def get_args(): | ||
import argparse | ||
|
||
parser = argparse.ArgumentParser("EdgeYOLO evaluate parser") | ||
parser.add_argument("-w", "--weights", type=str, default="edgeyolo_coco.pth", help="weights") | ||
parser.add_argument("-b", "--batch", type=int, default=8, help="batch size for each device") | ||
parser.add_argument("-i", "--input-size", type=int, nargs="+", default=[640, 640], help="image input size") | ||
|
||
parser.add_argument("--dataset", type=str, default="params/dataset/coco.yaml", help="dataset config") | ||
parser.add_argument("--device", type=int, nargs="+", default=[0], help="eval device") | ||
|
||
parser.add_argument("--no-obj-conf", action="store_true") | ||
parser.add_argument("--save", action="store_true", help="save deploy model without optimizer params") | ||
|
||
return parser.parse_args() | ||
|
||
|
||
def generate_params(**kwargs): | ||
PARAMS = { | ||
"dataset_cfg": "params/dataset/coco.yaml", | ||
"input_size": [640, 640], | ||
"weights": "edgeyolo_coco.pth", | ||
"device": [0, 1, 2, 3], | ||
"val_conf_thres": 0.001, | ||
"val_nms_thres": 0.65, | ||
"num_threads": 1, | ||
"batch_size_per_gpu": 8, | ||
"loader_num_workers": 4, | ||
"eval_only": True, | ||
"cudnn_benchmark": True, | ||
"fp16": False, | ||
"multiscale_range": 0, | ||
"output_dir": "eval_output", | ||
"use_ema": True, | ||
"use_cfg": False, | ||
"obj_conf_enabled": True, | ||
"save": False | ||
} | ||
for k, v in kwargs.items(): | ||
PARAMS[k] = v | ||
return PARAMS | ||
|
||
|
||
def eval_single( | ||
rank=0, | ||
params=None, | ||
dist_url="tcp://127.0.0.1:12345" | ||
): | ||
torch.set_num_threads(params["num_threads"]) | ||
cv2.setNumThreads(params["num_threads"]) | ||
|
||
params["device"] = params["device"] if isinstance(params["device"], list) else [params["device"]] | ||
device = params["device"][rank] | ||
torch.cuda.set_device(device) | ||
|
||
world_size = len(params["device"]) | ||
if world_size > 1: | ||
try: | ||
dist.init_process_group( | ||
backend="gloo", | ||
init_method=dist_url, | ||
world_size=world_size, | ||
rank=rank, | ||
timeout=timedelta(minutes=30), | ||
) | ||
except Exception: | ||
logger.error("Process group URL: {}".format(dist_url)) | ||
raise | ||
|
||
dist.barrier() | ||
cudnn.benchmark = params["cudnn_benchmark"] | ||
|
||
evaluator = Evaluator(params, rank) | ||
ap50, ap50_95 = evaluator.evaluate_only(params["weights"], False) | ||
|
||
if params.get("save"): | ||
evaluator.ckpt.pop("optimizer") if "optimizer" in evaluator.ckpt.keys() else None | ||
evaluator.ckpt["ap50"] = ap50 | ||
evaluator.ckpt["ap50_95"] = ap50_95 | ||
evaluator.ckpt["epoch"] = -1 | ||
logger.info(f"\nap50:95 = {ap50_95}\n" | ||
f"ap50 = {ap50}") | ||
path, f = os.path.dirname(params["weights"]), os.path.basename(params["weights"]) | ||
filepath = f"eval_{f}" | ||
torch.save(evaluator.ckpt, os.path.join(path, filepath)) | ||
logger.info(f"deploy model saved to {filepath}") | ||
|
||
|
||
def launch(params): | ||
world_size = len(params["device"]) | ||
is_distributed = world_size > 1 | ||
|
||
if is_distributed: | ||
|
||
def find_free_port(): | ||
import socket | ||
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) | ||
sock.bind(("", 0)) | ||
port = sock.getsockname()[1] | ||
sock.close() | ||
return port | ||
|
||
dist_url = f"tcp://127.0.0.1:{find_free_port()}" | ||
start_method = "spawn" | ||
|
||
mp.start_processes( | ||
eval_single, | ||
nprocs=world_size, | ||
args=( | ||
params, | ||
dist_url | ||
), | ||
daemon=False, | ||
start_method=start_method, | ||
) | ||
else: | ||
eval_single(params=params) | ||
|
||
|
||
if __name__ == '__main__': | ||
|
||
args = get_args() | ||
|
||
launch( | ||
generate_params( | ||
weights=args.weights, | ||
dataset_cfg=args.dataset, | ||
device=[*set(args.device)], | ||
batch_size_per_gpu=args.batch, | ||
input_size=args.input_size, | ||
obj_conf_enabled=not args.no_obj_conf, | ||
save=args.save | ||
) | ||
) |