Different from standard natural image datasets, remote sensing data is acquired from various sensor technologies and exhibit diverse range of scale variations as well as modalities. Existing satellite image pre-training methods either ignore the scale information present in the remote sensing imagery or restrict themselves to use only a single type of data modality. Compared to existing works, SatMAE++ with multi-scale pre-training is equally effective for both optical as well as multi-spectral imagery. SatMAE++ performs multi-scale pre-training and utilizes convolution based upsampling blocks to reconstruct the image at higher scales making it extensible to include more scales.
SatMAE++ incorporates the multiscale information by reconstructing the image at multiscale levels thereby improving the performance on various scene classification downstream datasets.
You can download the dataset and corresponding train/val csv files from these links [satmae github] [fmow-sentinel]
Directory structure of the dataset should be as below:
[Root folder]
____ train.csv
____ val.csv
____ [images folder]
________ train
____________ aiport
____________ aiport_hangar
____________ .......
________ val
____________ aiport
____________ aiport_hangar
____________ .......
To pretrain the ViT model (default is ViT-L) using SatMAE++ approach on fmow_sentinel dataset, use the command as below:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 --master_port=29201 main_pretrain.py \
--batch_size 16 --accum_iter 16 \
--epochs 50 --warmup_epochs 20 \
--input_size 96 --patch_size 8 \
--mask_ratio 0.75 \
--model_type group_c \
--dropped_bands 0 9 10 \
--dataset_type sentinel --dropped_bands 0 9 10 \
--grouped_bands 0 1 2 6 --grouped_bands 3 4 5 7 --grouped_bands 8 9 \
--blr 0.0001 --num_workers 16 \
--train_path /home/fmow-sentinel/train.csv \
--output_dir ./output_dir \
--log_dir ./output_dir
To finetune the ViT model (default is ViT-L), use the command as below:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 --master_port=29202 main_finetune.py \
--batch_size 8 --accum_iter 16 \
--epochs 30 --warmup_epochs 5 \
--input_size 96 --patch_size 8 \
--model_type group_c \
--dropped_bands 0 9 10 \
--dataset_type sentinel --dropped_bands 0 9 10 \
--grouped_bands 0 1 2 6 --grouped_bands 3 4 5 7 --grouped_bands 8 9 \
--weight_decay 0.05 --drop_path 0.2 --reprob 0.25 --mixup 0.8 --cutmix 1.0 \
--blr 0.0002 --num_workers 16 \
--train_path /home/fmow-sentinel/train.csv \
--test_path /home/fmow-sentinel/val.csv \
--output_dir ./finetune_dir \
--log_dir ./finetune_dir \
--finetune ./output_dir/checkpoint-49.pth
You can download the dataset by following the instructions here [fmow-github]
Download the train and validation json files here (will be uploaded soon). Alternately, you can preprocess data and create your own json/csv files using the script here [fmow-rgb preprocessing issue]
Directory structure of the dataset should look like as below:
[Root folder]
____ train_62classes.json
____ val_62classes.json
____ train
________ aiport
________ aiport_hangar
________ .......
____ val
________ aiport
________ aiport_hangar
________ .......
Use the below command to pretrain the ViT model (default is ViT-L) on fmow_RGB dataset:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 --master_port=29201 main_pretrain.py \
--batch_size 64 --accum_iter 32 \
--epochs 800 --warmup_epochs 20 \
--input_size 224 --patch_size 16 \
--mask_ratio 0.75 \
--model_type vanilla \
--dataset_type rgb \
--weight_decay 0.3 \
--lr 0.0007 --num_workers 16 \
--train_path /home/fmow-rgb/train_62classes.json \
--output_dir ./output_dir \
--log_dir ./output_dir
Use the following command to finetune the ViT model (default is ViT-L):
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 --master_port=29202 main_finetune.py \
--batch_size 8 --accum_iter 16 \
--epochs 50 --warmup_epochs 5 \
--input_size 224 --patch_size 16 \
--model_type vanilla \
--dataset_type rgb \
--weight_decay 0.05 --drop_path 0.2 --reprob 0.25 --mixup 0.8 --cutmix 1.0 \
--lr 0.001 --num_workers 16 \
--train_path /home/fmow-rgb/train_62classes.json \
--test_path /home/fmow-rgb/val_62classes.json \
--output_dir ./finetune_dir \
--log_dir ./finetune_dir \
--finetune ./output_dir/checkpoint-799.pth
Data splits for EuroSAT, UCMerced and RESISC-45 are available at [google-research].
- EuroSAT [download]
- RESISC-45 [onedrive link on page 2 paper] [project website]
- UCMerced [download]
Model | Dataset | Top1 Acc (%) | Pretrain | Finetune |
---|---|---|---|---|
ViT-L | FMoW-Sentinel | 63.23 | will be released soon | will be released soon |
ViT-L | FMoW-RGB | 78.14 | will be released soon | will be released soon |
The codebase is inspired from the SatMAE repository. We thank them for releasing their valuable codebase.
@inproceedings{satmaepp2024rethinking,
title={Rethinking Transformers Pre-training for Multi-Spectral Satellite Imagery},
author={Mubashir Noman and Muzammal Naseer and Hisham Cholakkal and Rao Muhammad Anwar and Salman Khan and Fahad Shahbaz Khan},
year={2024},
booktitle={CVPR}
}