Skip to content

RohitShende/codedog

 
 

Repository files navigation

🐶 Codedog

Checkstyle Pytest Coverage

Review your Github/Gitlab PR with ChatGPT

What is codedog?

Codedog is a code review automation tool benefit the power of LLM (Large Language Model) to help developers review code faster and more accurately.

Codedog is based on OpenAI API and Langchain.

Quickstart

Review your pull request via Github App

Install our github app codedog-assistant

Start with your own code

As a example, we will use codedog to review a pull request on Github.

  1. Install codedog
pip install codedog

codedog currently only supports python 3.10.

  1. Get a github pull request
from codedog.retrievers import GithubRetriever
from github import Github

github_token="YOUR GITHUB TOKEN"
repository = "codedog-ai/codedog"
pull_request_number = 2

github = Github(github_token)
retriever = GithubRetriever(github, repository, pull_request_number)
  1. Summarize the pull request

Since PRSummaryChain uses langchain's output parser, we suggest to use GPT-4 to improve formatting accuracy.

from langchain.chat_models import ChatOpenAI
from codedog.chains import PRSummaryChain

openai_api_key = "YOUR OPENAI API KEY WITH GPT4"

# PR Summary uses output parser
llm35 = ChatOpenAI(openai_api_key=openai_api_key, model="gpt-3.5-turbo")

llm4 = ChatOpenAI(openai_api_key=openai_api_key, model="gpt-4")

summary_chain = PRSummaryChain.from_llm(code_summary_llm=llm35, pr_summary_llm=llm4, verbose=True)

summary = summary_chain({"pull_request": retriever.pull_request}, include_run_info=True)

print(summary)
  1. Review each code file changes in the pull request
from codedog.chains import CodeReviewChain

review_chain = CodeReviewChain.from_llm(llm=llm35, verbose=True)

reviews = review_chain({"pull_request": retriever.pull_request}, include_run_info=True)

print(reviews)
  1. Format review result

Format review result to a markdown report.

from codedog.actors.reporters.pull_request import PullRequestReporter

reporter = PullRequestReporter(
    pr_summary=summary["pr_summary"],
    code_summaries=summary["code_summaries"],
    pull_request=retriever.pull_request,
    code_reviews=reviews["code_reviews"],
)

md_report = reporter.report()

print(md_report)

Deployment

We have a simple server demo to deploy codedog as a service with fastapi and handle Github webhook. Basicly you can also use it with workflow or Github Application.

see examples/server.py

Note that codedog don't have fastapi and unicorn as dependency, you need to install them manually.

Configuration

Codedog currently load config from environment variables.

settings:

Config Name Required Default Description
OPENAI_API_KEY No Api Key for calling openai gpt api
AZURE_OPENAI No Use azure openai if not blank
AZURE_OPENAI_API_KEY No Azure openai api key
AZURE_OPENAI_API_BASE No Azure openai api base
AZURE_OPENAI_DEPLOYMENT_ID No Azure openai deployment id for gpt 3.5
AZURE_OPENAI_GPT4_DEPLOYMENT_ID No Azure openai deployment id for gpt 4

About

Code review assistant powered by LLM

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%