Skip to content

Commit

Permalink
Merge branch 'master' into testing_preprocess
Browse files Browse the repository at this point in the history
  • Loading branch information
PyCaret authored Aug 21, 2020
2 parents bb6d137 + 39fec09 commit 76ad69d
Show file tree
Hide file tree
Showing 7 changed files with 81 additions and 62 deletions.
112 changes: 56 additions & 56 deletions datasets/index.csv
Original file line number Diff line number Diff line change
@@ -1,56 +1,56 @@
Dataset,Data Types,Default Task,Target Variable 1,Target Variable 2,# Instances,# Attributes,Missing Values
anomaly,Multivariate,Anomaly Detection,None,None,1000,10,N
france,Multivariate,Association Rule Mining,InvoiceNo,Description,8557,8,N
germany,Multivariate,Association Rule Mining,InvoiceNo,Description,9495,8,N
bank,Multivariate,Classification (Binary),deposit,None,45211,17,N
blood,Multivariate,Classification (Binary),Class,None,748,5,N
cancer,Multivariate,Classification (Binary),Class,None,683,10,N
credit,Multivariate,Classification (Binary),default,None,24000,24,N
diabetes,Multivariate,Classification (Binary),Class variable,None,768,9,N
electrical_grid,Multivariate,Classification (Binary),stabf,None,10000,14,N
employee,Multivariate,Classification (Binary),left,None,14999,10,N
heart,Multivariate,Classification (Binary),DEATH,None,200,16,N
heart_disease,Multivariate,Classification (Binary),Disease,None,270,14,N
hepatitis,Multivariate,Classification (Binary),Class,None,154,32,Y
income,Multivariate,Classification (Binary),income >50K,None,32561,14,Y
juice,Multivariate,Classification (Binary),Purchase,None,1070,15,N
nba,Multivariate,Classification (Binary),TARGET_5Yrs,None,1340,21,N
wine,Multivariate,Classification (Binary),type,None,6498,13,N
telescope,Multivariate,Classification (Binary),Class,None,19020,11,N
us_presidential_election_results,Multivariate,Classification (Binary),party_winner,None,497,7,N
glass,Multivariate,Classification (Multiclass),Type,None,214,10,N
iris,Multivariate,Classification (Multiclass),species,None,150,5,N
poker,Multivariate,Classification (Multiclass),CLASS,None,100000,11,N
questions,Multivariate,Classification (Multiclass),Next_Question,None,499,4,N
satellite,Multivariate,Classification (Multiclass),Class,None,6435,37,N
asia_gdp,Multivariate,Clustering,None,None,40,11,N
elections,Multivariate,Clustering,None,None,3195,54,Y
facebook,Multivariate,Clustering,None,None,7050,12,N
ipl,Multivariate,Clustering,None,None,153,25,N
jewellery,Multivariate,Clustering,None,None,505,4,N
mice,Multivariate,Clustering,None,None,1080,82,Y
migration,Multivariate,Clustering,None,None,233,12,N
perfume,Multivariate,Clustering,None,None,20,29,N
pokemon,Multivariate,Clustering,None,None,800,13,Y
population,Multivariate,Clustering,None,None,255,56,Y
public_health,Multivariate,Clustering,None,None,224,21,N
seeds,Multivariate,Clustering,None,None,210,7,N
wholesale,Multivariate,Clustering,None,None,440,8,N
tweets,Text,NLP,tweet,None,8594,2,N
amazon,Text,NLP / Classification,reviewText,None,20000,2,N
kiva,Text,NLP / Classification,en,None,6818,7,N
spx,Text,NLP / Regression,text,None,874,4,N
wikipedia,Text,NLP / Classification,Text,None,500,3,N
automobile,Multivariate,Regression,price,None,202,26,Y
bike,Multivariate,Regression,cnt,None,17379,15,N
boston,Multivariate,Regression,medv,None,506,14,N
concrete,Multivariate,Regression,strength,None,1030,9,N
diamond,Multivariate,Regression,Price,None,6000,8,N
energy,Multivariate,Regression,Heating Load,Cooling Load,768,10,N
forest,Multivariate,Regression,area,None,517,13,N
gold,Multivariate,Regression,Gold_T+22,None,2558,121,N
house,Multivariate,Regression,SalePrice,None,1461,81,Y
insurance,Multivariate,Regression,charges,None,1338,7,N
parkinsons,Multivariate,Regression,PPE,None,5875,22,N
traffic,Multivariate,Regression,traffic_volume,None,48204,8,N
CTG, Multivariate, Classification (Multiclass), NSP,None,2129,40,Y
Dataset,Data Types,Default Task,Target Variable 1,Target Variable 2,# Instances,# Attributes,Missing Values
anomaly,Multivariate,Anomaly Detection,None,None,1000,10,N
france,Multivariate,Association Rule Mining,InvoiceNo,Description,8557,8,N
germany,Multivariate,Association Rule Mining,InvoiceNo,Description,9495,8,N
bank,Multivariate,Classification (Binary),deposit,None,45211,17,N
blood,Multivariate,Classification (Binary),Class,None,748,5,N
cancer,Multivariate,Classification (Binary),Class,None,683,10,N
credit,Multivariate,Classification (Binary),default,None,24000,24,N
diabetes,Multivariate,Classification (Binary),Class variable,None,768,9,N
electrical_grid,Multivariate,Classification (Binary),stabf,None,10000,14,N
employee,Multivariate,Classification (Binary),left,None,14999,10,N
heart,Multivariate,Classification (Binary),DEATH,None,200,16,N
heart_disease,Multivariate,Classification (Binary),Disease,None,270,14,N
hepatitis,Multivariate,Classification (Binary),Class,None,154,32,Y
income,Multivariate,Classification (Binary),income >50K,None,32561,14,Y
juice,Multivariate,Classification (Binary),Purchase,None,1070,15,N
nba,Multivariate,Classification (Binary),TARGET_5Yrs,None,1340,21,N
wine,Multivariate,Classification (Binary),type,None,6498,13,N
telescope,Multivariate,Classification (Binary),Class,None,19020,11,N
us_presidential_election_results,Multivariate,Classification (Binary),party_winner,None,497,7,N
glass,Multivariate,Classification (Multiclass),Type,None,214,10,N
iris,Multivariate,Classification (Multiclass),species,None,150,5,N
poker,Multivariate,Classification (Multiclass),CLASS,None,100000,11,N
questions,Multivariate,Classification (Multiclass),Next_Question,None,499,4,N
satellite,Multivariate,Classification (Multiclass),Class,None,6435,37,N
asia_gdp,Multivariate,Clustering,None,None,40,11,N
elections,Multivariate,Clustering,None,None,3195,54,Y
facebook,Multivariate,Clustering,None,None,7050,12,N
ipl,Multivariate,Clustering,None,None,153,25,N
jewellery,Multivariate,Clustering,None,None,505,4,N
mice,Multivariate,Clustering,None,None,1080,82,Y
migration,Multivariate,Clustering,None,None,233,12,N
perfume,Multivariate,Clustering,None,None,20,29,N
pokemon,Multivariate,Clustering,None,None,800,13,Y
population,Multivariate,Clustering,None,None,255,56,Y
public_health,Multivariate,Clustering,None,None,224,21,N
seeds,Multivariate,Clustering,None,None,210,7,N
wholesale,Multivariate,Clustering,None,None,440,8,N
tweets,Text,NLP,tweet,None,8594,2,N
amazon,Text,NLP / Classification,reviewText,None,20000,2,N
kiva,Text,NLP / Classification,en,None,6818,7,N
spx,Text,NLP / Regression,text,None,874,4,N
wikipedia,Text,NLP / Classification,Text,None,500,3,N
automobile,Multivariate,Regression,price,None,202,26,Y
bike,Multivariate,Regression,cnt,None,17379,15,N
boston,Multivariate,Regression,medv,None,506,14,N
concrete,Multivariate,Regression,strength,None,1030,9,N
diamond,Multivariate,Regression,Price,None,6000,8,N
energy,Multivariate,Regression,Heating Load,Cooling Load,768,10,N
forest,Multivariate,Regression,area,None,517,13,N
gold,Multivariate,Regression,Gold_T+22,None,2558,121,N
house,Multivariate,Regression,SalePrice,None,1461,81,Y
insurance,Multivariate,Regression,charges,None,1338,7,N
parkinsons,Multivariate,Regression,PPE,None,5875,22,N
traffic,Multivariate,Regression,traffic_volume,None,48204,8,N
CTG, Multivariate, Classification (Multiclass),NSP,None,2129,40,Y
2 changes: 1 addition & 1 deletion pycaret/tests/test_anomaly.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ def test():
assert isinstance(data, pd.core.frame.DataFrame)

# init setup
ano1 = pycaret.anomaly.setup(data, normalize=True, silent=True, html=False, session_id=123)
ano1 = pycaret.anomaly.setup(data, normalize=True, log_experiment=True, silent=True, html=False, session_id=123)
assert isinstance(ano1, tuple)

# create model
Expand Down
21 changes: 20 additions & 1 deletion pycaret/tests/test_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,8 +13,27 @@ def test():
assert isinstance(data, pd.core.frame.DataFrame)

# init setup
clf1 = pycaret.classification.setup(data, target='Purchase', silent=True, html=False, session_id=123)
clf1 = pycaret.classification.setup(data, target='Purchase', log_experiment=True, silent=True, html=False, session_id=123)
assert isinstance(clf1, tuple)
assert isinstance(clf1[0], pd.core.frame.DataFrame)
assert isinstance(clf1[1], pd.core.series.Series)
assert isinstance(clf1[2], pd.core.frame.DataFrame)
assert isinstance(clf1[3], pd.core.frame.DataFrame)
assert isinstance(clf1[4], pd.core.series.Series)
assert isinstance(clf1[5], pd.core.series.Series)
assert isinstance(clf1[6], int)
assert isinstance(clf1[8], list)
assert isinstance(clf1[9], bool)
assert isinstance(clf1[10], int)
assert isinstance(clf1[11], bool)
assert isinstance(clf1[12], list)
assert isinstance(clf1[13], list)
assert isinstance(clf1[14], list)
assert isinstance(clf1[15], str)
assert isinstance(clf1[16], bool)
assert isinstance(clf1[17], bool)
assert isinstance(clf1[18], str)
assert isinstance(clf1[19], bool)

# compare models
top3 = pycaret.classification.compare_models(n_select = 3, exclude=['catboost'])
Expand Down
2 changes: 1 addition & 1 deletion pycaret/tests/test_clustering.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ def test():
assert isinstance(data, pd.core.frame.DataFrame)

# init setup
clu1 = pycaret.clustering.setup(data, normalize = True, silent=True, html=False, session_id=123)
clu1 = pycaret.clustering.setup(data, normalize = True, log_experiment=True, silent=True, html=False, session_id=123)
assert isinstance(clu1, tuple)

# create model
Expand Down
2 changes: 1 addition & 1 deletion pycaret/tests/test_datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ def test():
data = pycaret.datasets.get_data('index')
assert isinstance(data, pd.core.frame.DataFrame)
row, col = data.shape
assert row <= 54
assert row > 1
assert col == 7

# loading dataset
Expand Down
2 changes: 1 addition & 1 deletion pycaret/tests/test_nlp.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ def test():
assert isinstance(data, pd.core.frame.DataFrame)

# init setup
nlp1 = pycaret.nlp.setup(data = data, target = 'en', html=False, session_id = 123)
nlp1 = pycaret.nlp.setup(data = data, target = 'en', log_experiment=True, html=False, session_id = 123)
assert isinstance(nlp1, tuple)

# create model
Expand Down
2 changes: 1 addition & 1 deletion pycaret/tests/test_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ def test():
assert isinstance(data, pd.core.frame.DataFrame)

# init setup
reg1 = pycaret.regression.setup(data, target='medv',silent=True, html=False, session_id=123)
reg1 = pycaret.regression.setup(data, target='medv',silent=True, log_experiment=True, html=False, session_id=123)
assert isinstance(reg1, tuple)

# compare models
Expand Down

0 comments on commit 76ad69d

Please sign in to comment.