Skip to content

SJTU-mxtao/Joint-Coding-Modulation-for-Digital-Semantic-Communication

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python code for "Joint coding-modulation for digital semantic communications via variational autoencoder"

This repository contains the original code and models for the work Joint Coding-Modulation for Digital Semantic Communications via Variational Autoencoder[1].

[1] Y. Bo, Y. Duan, S. Shao and M. Tao, "Joint Coding-Modulation for Digital Semantic Communications via Variational Autoencoder," in IEEE Transactions on Communications, doi: 10.1109/TCOMM.2024.3386577.

Requirements

  • matplotlib==3.7.2
  • numpy==1.23.5
  • pandas==2.0.3
  • scikit_learn==1.3.0
  • scipy==1.13.0
  • scikit-image==0.21.0
  • torch==1.12.1+cu113
  • torchvision==0.13.1+cu113
  • tqdm==4.65.0

Training & Evaluation

This code implements 4 modulation schemes: BPSK, 4QAM, 16QAM and 64QAM.

For training, run the following command (as an example):

python main.py --mode 'train' --mod_method '64qam' --load_checkpoint 1

For evaluation, run the following command (as an example):

python main.py --mode 'test' --mod_method '64qam' --load_checkpoint 1

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages