Skip to content

Commit

Permalink
BUG/REG: RollingGroupby MultiIndex levels dropped (pandas-dev#38737)
Browse files Browse the repository at this point in the history
Co-authored-by: Simon Hawkins <[email protected]>
  • Loading branch information
mroeschke and simonjayhawkins authored Dec 29, 2020
1 parent beb4f1b commit a37f1a4
Show file tree
Hide file tree
Showing 4 changed files with 55 additions and 23 deletions.
1 change: 1 addition & 0 deletions doc/source/whatsnew/v1.2.1.rst
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ Fixed regressions
~~~~~~~~~~~~~~~~~
- The deprecated attributes ``_AXIS_NAMES`` and ``_AXIS_NUMBERS`` of :class:`DataFrame` and :class:`Series` will no longer show up in ``dir`` or ``inspect.getmembers`` calls (:issue:`38740`)
- :meth:`to_csv` created corrupted zip files when there were more rows than ``chunksize`` (issue:`38714`)
- Fixed a regression in ``groupby().rolling()`` where :class:`MultiIndex` levels were dropped (:issue:`38523`)
- Bug in repr of float-like strings of an ``object`` dtype having trailing 0's truncated after the decimal (:issue:`38708`)
-

Expand Down
2 changes: 1 addition & 1 deletion pandas/core/shared_docs.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,7 +108,7 @@
Note this does not influence the order of observations within each
group. Groupby preserves the order of rows within each group.
group_keys : bool, default True
When calling apply, add group keys to index to identify pieces.
When calling ``groupby().apply()``, add group keys to index to identify pieces.
squeeze : bool, default False
Reduce the dimensionality of the return type if possible,
otherwise return a consistent type.
Expand Down
28 changes: 11 additions & 17 deletions pandas/core/window/rolling.py
Original file line number Diff line number Diff line change
Expand Up @@ -769,28 +769,22 @@ def _apply(
numba_cache_key,
**kwargs,
)
# Reconstruct the resulting MultiIndex from tuples
# Reconstruct the resulting MultiIndex
# 1st set of levels = group by labels
# 2nd set of levels = original index
# Ignore 2nd set of levels if a group by label include an index level
result_index_names = [
grouping.name for grouping in self._groupby.grouper._groupings
]
grouped_object_index = None
# 2nd set of levels = original DataFrame/Series index
grouped_object_index = self.obj.index
grouped_index_name = [*grouped_object_index.names]
groupby_keys = [grouping.name for grouping in self._groupby.grouper._groupings]
result_index_names = groupby_keys + grouped_index_name

column_keys = [
drop_columns = [
key
for key in result_index_names
for key in groupby_keys
if key not in self.obj.index.names or key is None
]

if len(column_keys) == len(result_index_names):
grouped_object_index = self.obj.index
grouped_index_name = [*grouped_object_index.names]
result_index_names += grouped_index_name
else:
# Our result will have still kept the column in the result
result = result.drop(columns=column_keys, errors="ignore")
if len(drop_columns) != len(groupby_keys):
# Our result will have kept groupby columns which should be dropped
result = result.drop(columns=drop_columns, errors="ignore")

codes = self._groupby.grouper.codes
levels = self._groupby.grouper.levels
Expand Down
47 changes: 42 additions & 5 deletions pandas/tests/window/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -556,23 +556,31 @@ def test_groupby_rolling_nans_in_index(self, rollings, key):
with pytest.raises(ValueError, match=f"{key} must be monotonic"):
df.groupby("c").rolling("60min", **rollings)

def test_groupby_rolling_group_keys(self):
@pytest.mark.parametrize("group_keys", [True, False])
def test_groupby_rolling_group_keys(self, group_keys):
# GH 37641
# GH 38523: GH 37641 actually was not a bug.
# group_keys only applies to groupby.apply directly
arrays = [["val1", "val1", "val2"], ["val1", "val1", "val2"]]
index = MultiIndex.from_arrays(arrays, names=("idx1", "idx2"))

s = Series([1, 2, 3], index=index)
result = s.groupby(["idx1", "idx2"], group_keys=False).rolling(1).mean()
result = s.groupby(["idx1", "idx2"], group_keys=group_keys).rolling(1).mean()
expected = Series(
[1.0, 2.0, 3.0],
index=MultiIndex.from_tuples(
[("val1", "val1"), ("val1", "val1"), ("val2", "val2")],
names=["idx1", "idx2"],
[
("val1", "val1", "val1", "val1"),
("val1", "val1", "val1", "val1"),
("val2", "val2", "val2", "val2"),
],
names=["idx1", "idx2", "idx1", "idx2"],
),
)
tm.assert_series_equal(result, expected)

def test_groupby_rolling_index_level_and_column_label(self):
# The groupby keys should not appear as a resulting column
arrays = [["val1", "val1", "val2"], ["val1", "val1", "val2"]]
index = MultiIndex.from_arrays(arrays, names=("idx1", "idx2"))

Expand All @@ -581,7 +589,12 @@ def test_groupby_rolling_index_level_and_column_label(self):
expected = DataFrame(
{"B": [0.0, 1.0, 2.0]},
index=MultiIndex.from_tuples(
[("val1", 1), ("val1", 1), ("val2", 2)], names=["idx1", "A"]
[
("val1", 1, "val1", "val1"),
("val1", 1, "val1", "val1"),
("val2", 2, "val2", "val2"),
],
names=["idx1", "A", "idx1", "idx2"],
),
)
tm.assert_frame_equal(result, expected)
Expand Down Expand Up @@ -640,6 +653,30 @@ def test_groupby_rolling_resulting_multiindex(self):
)
tm.assert_index_equal(result.index, expected_index)

def test_groupby_level(self):
# GH 38523
arrays = [
["Falcon", "Falcon", "Parrot", "Parrot"],
["Captive", "Wild", "Captive", "Wild"],
]
index = MultiIndex.from_arrays(arrays, names=("Animal", "Type"))
df = DataFrame({"Max Speed": [390.0, 350.0, 30.0, 20.0]}, index=index)
result = df.groupby(level=0)["Max Speed"].rolling(2).sum()
expected = Series(
[np.nan, 740.0, np.nan, 50.0],
index=MultiIndex.from_tuples(
[
("Falcon", "Falcon", "Captive"),
("Falcon", "Falcon", "Wild"),
("Parrot", "Parrot", "Captive"),
("Parrot", "Parrot", "Wild"),
],
names=["Animal", "Animal", "Type"],
),
name="Max Speed",
)
tm.assert_series_equal(result, expected)


class TestExpanding:
def setup_method(self):
Expand Down

0 comments on commit a37f1a4

Please sign in to comment.