Skip to content

[TO BE UPDATED] Predicting energy consumption using an LSTM Autoencoder and XGBoost.

Notifications You must be signed in to change notification settings

SabrinaOtoni/EnergyConsumptionCase

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EnergyConsumptionCase

Description

Predicting energy consumption using an LSTM Autoencoder and XGBoost.

Goal

As a DS student, my goals with this project are only to study a little bit more about time series cases, the implementation of an LSTM Autoencoder and a XGBoost model for prediction.

Dataset

https://www.kaggle.com/datasets/robikscube/hourly-energy-consumption

Folder Structure

The project has been organized in a linear manner to facilitate navigation and understanding of the step-by-step process.

├── automations
│   │   ├── folders_creation.py
├── data
│   ├── d01_raw
│   │   ├── PJME_hourly.csv
│   ├── d02_intermediate
│   │   ├── pjme_n00.csv
│   │   ├── pjme_n01.csv
│   │   ├── pjme_test.csv
│   │   ├── pjme_train.csv
├── model
│   ├── xgboost_gs.pkl
│   ├── xgboost_params.txt
├── notebooks
│   ├── n00_data_preparation.ipynb
│   ├── n01_exploratory_data_analysis.ipynb
│   ├── n02_data_split.ipynb
│   ├── n03_feature_engineering.ipynb
│   ├── n04_xgboost_training_validation.ipynb
│   ├── n04_lstm_training_validation.ipynb
└── README.md

https://towardsdatascience.com/step-by-step-understanding-lstm-autoencoder-layers-ffab055b6352 https://towardsdatascience.com/lstm-autoencoder-for-extreme-rare-event-classification-in-keras-ce209a224cfb https://machinelearningmastery.com/lstm-autoencoders/

Linkedin

https://www.linkedin.com/in/sabrina-otoni-da-silva-22525519b/

About

[TO BE UPDATED] Predicting energy consumption using an LSTM Autoencoder and XGBoost.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published