Skip to content

Commit

Permalink
update README
Browse files Browse the repository at this point in the history
  • Loading branch information
Chilicyy committed Jan 16, 2023
1 parent aac69f4 commit 2e6bc63
Show file tree
Hide file tree
Showing 2 changed files with 9 additions and 0 deletions.
5 changes: 5 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,11 @@ Implementation of paper:
## What's New

- [2023.01.06] Release P6 models and enhance the performance of P5 models. ⭐️ [Benchmark](#Benchmark)
- Renew the neck of the detector with a BiC module and SimCSPSPPF Block.
- Propose an anchor-aided training (AAT) strategy.
- Involve a new self-distillation strategy for small models of YOLOv6.
- Expand YOLOv6 and hit a new
SOTA performance on the COCO dataset.
- [2022.11.04] Release [base models](configs/base/README.md) to simplify the training and deployment process.
- [2022.09.06] Customized quantization methods. 🚀 [Quantization Tutorial](./tools/qat/README.md)
- [2022.09.05] Release M/L models and update N/T/S models with enhanced performance.
Expand Down
4 changes: 4 additions & 0 deletions README_cn.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,10 @@

## 更新日志
- [2023.01.06] 发布大分辨率 P6 模型以及对 P5 模型做了全面的升级 ⭐️ [模型指标](#模型指标)
- 添加 BiC 模块 和 SimCSPSPPF 模块以增强检测网络颈部的表征能力。
- 提出一个锚点辅助训练 (AAT) 策略。
- 为 YOLOv6 小模型引入一个新的自蒸馏训练策略。
- 扩展 YOLOv6 并在 COCO 上取得了实时目标检测 SOTA 的精度和速度。
- [2022.11.04] 发布 [基础版模型](configs/base/README_cn.md) 简化训练部署流程
- [2022.09.06] 定制化的模型量化加速方法 🚀 [量化教程](./tools/qat/README.md)
- [2022.09.05] 发布 M/L 模型,并且进一步提高了 N/T/S 模型的性能
Expand Down

0 comments on commit 2e6bc63

Please sign in to comment.