Skip to content

Commit

Permalink
fix typos
Browse files Browse the repository at this point in the history
  • Loading branch information
Chilicyy committed Mar 3, 2023
1 parent 15d866d commit 8a49083
Show file tree
Hide file tree
Showing 4 changed files with 12 additions and 16 deletions.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ Implementation of paper:


## What's New
- [2023.3.2] Updates [base models](configs/base/README.md) to version 0.3.
- [2023.03.02] Update [base models](configs/base/README.md) to version 3.0.
- [2023.01.06] Release P6 models and enhance the performance of P5 models. ⭐️ [Benchmark](#Benchmark)
- Renew the neck of the detector with a BiC module and SimCSPSPPF Block.
- Propose an anchor-aided training (AAT) strategy.
Expand Down
2 changes: 1 addition & 1 deletion README_cn.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@


## 更新日志
- [2023.3.2] 更新 [基础版模型](configs/base/READM_cn.md)0.3 版本
- [2023.03.02] 更新 [基础版模型](configs/base/READM_cn.md)3.0 版本
- [2023.01.06] 发布大分辨率 P6 模型以及对 P5 模型做了全面的升级 ⭐️ [模型指标](#模型指标)
- 添加 BiC 模块 和 SimCSPSPPF 模块以增强检测网络颈部的表征能力。
- 提出一个锚点辅助训练 (AAT) 策略。
Expand Down
12 changes: 5 additions & 7 deletions configs/base/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,20 +9,18 @@ English | [简体中文](./README_cn.md)
- Apply CSP (1/2 channel dim) blocks in the network structure, except for Nano base model.

Advantage:
- Adopt a unified network structure and configuration, and the accuracy loss of the PTQ 8-bit quantization model is negligible, about 0.4%.
- Adopt a unified network structure and configuration, and the accuracy loss of the PTQ 8-bit quantization model is negligible.
- Suitable for users who are just getting started or who need to apply, optimize and deploy an 8-bit quantization model quickly and frequently.

Shortcoming:
- The accuracy on COCO is slightly lower than the v2.0 released models.

### Performance

| Model | Size | mAP<sup>val<br/>0.5:0.95 | Speed<sup>T4<br/>TRT FP16 b1 <br/>(FPS) | Speed<sup>T4<br/>TRT FP16 b32 <br/>(FPS) | Speed<sup>T4<br/>TRT INT8 b1 <br/>(FPS) | Speed<sup>T4<br/>TRT INT8 b32 <br/>(FPS) | Params<br/><sup> (M) | FLOPs<br/><sup> (G) |
| :--------------------------------------------------------------------------------------------- | --- | ----------------- | ----- | ---- | ---- | ---- | ----- | ------ |
| [**YOLOv6-N-base**](https://github.com/meituan/YOLOv6/releases/download/0.2.1/yolov6n_base.pt) | 640 | 36.6<sup>distill | 727 | 1302 | 814 | 1805 | 4.65 | 11.46 |
| [**YOLOv6-S-base**](https://github.com/meituan/YOLOv6/releases/download/0.2.1/yolov6s_base.pt) | 640 | 45.3<sup>distill | 346 | 525 | 487 | 908 | 13.14 | 30.6 |
| [**YOLOv6-M-base**](https://github.com/meituan/YOLOv6/releases/download/0.2.1/yolov6m_base.pt) | 640 | 49.4<sup>distill | 179 | 245 | 284 | 439 | 28.33 | 72.30 |
| [**YOLOv6-L-base**](https://github.com/meituan/YOLOv6/releases/download/0.2.1/yolov6l_base.pt) | 640 | 51.1<sup>distill | 116 | 157 | 196 | 288 | 59.61 | 150.89 |
| [**YOLOv6-N-base**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6n_base.pt) | 640 | 36.6<sup>distill | 727 | 1302 | 814 | 1805 | 4.65 | 11.46 |
| [**YOLOv6-S-base**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s_base.pt) | 640 | 45.3<sup>distill | 346 | 525 | 487 | 908 | 13.14 | 30.6 |
| [**YOLOv6-M-base**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6m_base.pt) | 640 | 49.4<sup>distill | 179 | 245 | 284 | 439 | 28.33 | 72.30 |
| [**YOLOv6-L-base**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6l_base.pt) | 640 | 51.1<sup>distill | 116 | 157 | 196 | 288 | 59.61 | 150.89 |

- Speed is tested with TensorRT 8.2.4.2 on T4.
- The processes of model training, evaluation, and inference are the same as the original ones. For details, please refer to [this README](https://github.com/meituan/YOLOv6#quick-start).
12 changes: 5 additions & 7 deletions configs/base/README_cn.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,19 +9,17 @@
- 网络结构均采用CSP (1/2通道) block,Nano网络除外。

优势:
- 采用统一的网络结构和配置,且 PTQ 8位量化模型精度损失(约0.4%)较小,适合刚入门或有快速迭代部署8位量化模型需求的用户。
- 采用统一的网络结构和配置,且 PTQ 8位量化模型精度损失较小,适合刚入门或有快速迭代部署8位量化模型需求的用户。

不足:
- COCO上精度对比2.0版本发布模型稍低。

### 模型指标

| 模型 | 尺寸 | mAP<sup>val<br/>0.5:0.95 | 速度<sup>T4<br/>TRT FP16 b1 <br/>(FPS) | 速度<sup>T4<br/>TRT FP16 b32 <br/>(FPS) | 速度<sup>T4<br/>TRT INT8 b1 <br/>(FPS) | 速度<sup>T4<br/>TRT INT8 b32 <br/>(FPS) | Params<br/><sup> (M) | FLOPs<br/><sup> (G) |
| :--------------------------------------------------------------------------------------------- | --- | ----------------- | ----- | ---- | ---- | ---- | ----- | ------ |
| [**YOLOv6-N-base**](https://github.com/meituan/YOLOv6/releases/download/0.2.1/yolov6n_base.pt) | 640 | 36.6<sup>distill | 727 | 1302 | 814 | 1805 | 4.65 | 11.46 |
| [**YOLOv6-S-base**](https://github.com/meituan/YOLOv6/releases/download/0.2.1/yolov6s_base.pt) | 640 | 45.3<sup>distill | 346 | 525 | 487 | 908 | 13.14 | 30.6 |
| [**YOLOv6-M-base**](https://github.com/meituan/YOLOv6/releases/download/0.2.1/yolov6m_base.pt) | 640 | 49.4<sup>distill | 179 | 245 | 284 | 439 | 28.33 | 72.30 |
| [**YOLOv6-L-base**](https://github.com/meituan/YOLOv6/releases/download/0.2.1/yolov6l_base.pt) | 640 | 51.1<sup>distill | 116 | 157 | 196 | 288 | 59.61 | 150.89 |
| [**YOLOv6-N-base**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6n_base.pt) | 640 | 36.6<sup>distill | 727 | 1302 | 814 | 1805 | 4.65 | 11.46 |
| [**YOLOv6-S-base**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s_base.pt) | 640 | 45.3<sup>distill | 346 | 525 | 487 | 908 | 13.14 | 30.6 |
| [**YOLOv6-M-base**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6m_base.pt) | 640 | 49.4<sup>distill | 179 | 245 | 284 | 439 | 28.33 | 72.30 |
| [**YOLOv6-L-base**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6l_base.pt) | 640 | 51.1<sup>distill | 116 | 157 | 196 | 288 | 59.61 | 150.89 |

- 速度是在 T4 上测试的,TensorRT 版本为 8.4.2.4;
- 模型训练、评估、推理流程与原来保持一致,具体可参考 [首页 README 文档](https://github.com/meituan/YOLOv6/blob/main/README_cn.md#%E5%BF%AB%E9%80%9F%E5%BC%80%E5%A7%8B)

0 comments on commit 8a49083

Please sign in to comment.