Skip to content
This repository has been archived by the owner on Oct 15, 2024. It is now read-only.

Seeed-Studio/yolov5-swift

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLOV5-SWIFT

This repository is based on ultralytics/yolov5. Seeed has modified it to make it more suitable for AIoT hardware devices launched by Seeed.

image

Model test results on the coco dataset

Model Input_size FLOPs Params Size(M) [email protected] [email protected]:0.95
yolov5n6-xiao 192×192 0.07G 0.4M 0.5 0.28 0.15

Test speed in different situations

Equipment Computing backend Input specification time(ms)
Intel [email protected] 192×192 pt 15
Himax6537 400MHz 192×192 tflite 700

Quick start Open In Colab

Install

Python>=3.7.0 is required with all requirements.txt installed including PyTorch>=1.7:

$ git clone https://github.com/Seeed-Studio/yolov5-swift
$ cd YOLOv5-swift
$ pip install -r requirements.txt
Inference with detect.py

detect.py runs inference on a variety of sources, downloading models automatically from the YOLOv5n6-xiao and saving results to runs/detect.

$ python detect.py --source 0  # webcam
                            file.jpg  # image 
                            file.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            'https://youtu.be/NUsoVlDFqZg'  # YouTube
                            'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
Training
$ python train.py --data coco.yaml --cfg yolov5n6-xiao.yaml --weights yolov5n6-xiao.pt --batch-size 128    
Export TFlite

The trained pt format model can be exported to the int8 type tflite model by the following command

$ python export.py --data coco.yaml --cfg yolov5n6-xiao.yaml --weights yolov5n6-xiao.pt --imgsz 192 --int8   
Export UF2

UF2 is a file format, developed by Microsoft. Seeed uses this format to convert .tflite to .uf2, allowing tflite files to be stored on the AIoT devices launched by Seeed.

Currently Seeed's devices support up to 4 models, each model (.tflite) is less than 1M .

You can specify the model to be placed in the corresponding index with -t.

$ python uf2conv.py -f GROVEAI -t 1 -c xxx.tflite -o xxx.uf2 # Place the model to index 1

$ python uf2conv.py -f GROVEAI -t 1 xxx.tflite -o xxx.uf2 # Place the model to index 1 & flash it

References

[1] Official YOLOV5 repository

[2] Official UF2 repository

About

YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite > UF2

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 98.4%
  • Other 1.6%