Skip to content

ServiceStack/llms

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

llms.py

Lightweight CLI and OpenAI-compatible server for querying multiple Large Language Model (LLM) providers.

Configure additional providers and models in llms.json

  • Mix and match local models with models from different API providers
  • Requests automatically routed to available providers that supports the requested model (in defined order)
  • Define free/cheapest/local providers first to save on costs
  • Any failures are automatically retried on the next available provider

Features

  • Lightweight: Single llms.py Python file with single aiohttp dependency
  • Multi-Provider Support: OpenRouter, Ollama, Anthropic, Google, OpenAI, Grok, Groq, Qwen, Mistral
  • OpenAI-Compatible API: Works with any client that supports OpenAI's chat completion API
  • Configuration Management: Easy provider enable/disable and configuration management
  • CLI Interface: Simple command-line interface for quick interactions
  • Server Mode: Run an OpenAI-compatible HTTP server at http://localhost:{PORT}/v1/chat/completions
  • Image Support: Process images through vision-capable models
  • Audio Support: Process audio through audio-capable models
  • Custom Chat Templates: Configurable chat completion request templates for different modalities
  • Auto-Discovery: Automatically discover available Ollama models
  • Unified Models: Define custom model names that map to different provider-specific names
  • Multi-Model Support: Support for over 160+ different LLMs

llms.py UI

Simple ChatGPT-like UI to access ALL Your LLMs, Locally or Remotely!

llms.py UI

Read the Introductory Blog Post.

Installation

Option 1: Install from PyPI

pip install llms-py

Option 2: Download directly

  1. Download llms.py
curl -O https://raw.githubusercontent.com/ServiceStack/llms/main/llms.py
chmod +x llms.py
mv llms.py ~/.local/bin/llms
  1. Install single dependency:
pip install aiohttp

Quick Start

1. Initialize Configuration

Create a default configuration file:

llms --init

This saves the latest llms.json configuration to ~/.llms/llms.json.

Modify ~/.llms/llms.json to enable providers, add required API keys, additional models or any custom OpenAI-compatible providers.

2. Set API Keys

Set environment variables for the providers you want to use:

export OPENROUTER_API_KEY="..."
export GROQ_API_KEY="..."
export GOOGLE_API_KEY="..."
export ANTHROPIC_API_KEY="..."
export GROK_API_KEY="..."
export DASHSCOPE_API_KEY="..."
# ... etc

3. Enable Providers

Enable the providers you want to use:

# Enable providers with free models and free tiers
llms --enable openrouter_free google_free groq

# Enable paid providers
llms --enable openrouter anthropic google openai mistral grok qwen

4. Start Chatting

llms "What is the capital of France?"

Configuration

The configuration file (llms.json) defines available providers, models, and default settings. Key sections:

Defaults

  • headers: Common HTTP headers for all requests
  • text: Default chat completion request template for text prompts

Providers

Each provider configuration includes:

  • enabled: Whether the provider is active
  • type: Provider class (OpenAiProvider, GoogleProvider, etc.)
  • api_key: API key (supports environment variables with $VAR_NAME)
  • base_url: API endpoint URL
  • models: Model name mappings (local name → provider name)

Command Line Usage

Basic Chat

# Simple question
llms "Explain quantum computing"

# With specific model
llms -m gemini-2.5-pro "Write a Python function to sort a list"
llms -m grok-4 "Explain this code with humor"
llms -m qwen3-max "Translate this to Chinese"

# With system prompt
llms -s "You are a helpful coding assistant" "How do I reverse a string in Python?"

# With image (vision models)
llms --image image.jpg "What's in this image?"
llms --image https://example.com/photo.png "Describe this photo"

# Display full JSON Response
llms "Explain quantum computing" --raw

Using a Chat Template

By default llms uses the defaults/text chat completion request defined in llms.json.

You can instead use a custom chat completion request with --chat, e.g:

# Load chat completion request from JSON file
llms --chat request.json

# Override user message
llms --chat request.json "New user message"

# Override model
llms -m kimi-k2 --chat request.json

Example request.json:

{
  "model": "kimi-k2",
  "messages": [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user",   "content": ""}
  ],
  "temperature": 0.7,
  "max_tokens": 150
}

Image Requests

Send images to vision-capable models using the --image option:

# Use defaults/image Chat Template (Describe the key features of the input image)
llms --image ./screenshot.png

# Local image file
llms --image ./screenshot.png "What's in this image?"

# Remote image URL
llms --image https://example.org/photo.jpg "Describe this photo"

# Data URI
llms --image "data:image/png;base64,$(base64 -w 0 image.png)" "Describe this image"

# With a specific vision model
llms -m gemini-2.5-flash --image chart.png "Analyze this chart"
llms -m qwen2.5vl --image document.jpg "Extract text from this document"

# Combined with system prompt
llms -s "You are a data analyst" --image graph.png "What trends do you see?"

# With custom chat template
llms --chat image-request.json --image photo.jpg

Example of image-request.json:

{
    "model": "qwen2.5vl",
    "messages": [
        {
            "role": "user",
            "content": [
                {
                    "type": "image_url",
                    "image_url": {
                        "url": ""
                    }
                },
                {
                    "type": "text",
                    "text": "Caption this image"
                }
            ]
        }
    ]
}

Supported image formats: PNG, WEBP, JPG, JPEG, GIF, BMP, TIFF, ICO

Image sources:

  • Local files: Absolute paths (/path/to/image.jpg) or relative paths (./image.png, ../image.jpg)
  • Remote URLs: HTTP/HTTPS URLs are automatically downloaded
  • Data URIs: Base64-encoded images (data:image/png;base64,...)

Images are automatically processed and converted to base64 data URIs before being sent to the model.

Vision-Capable Models

Popular models that support image analysis:

  • OpenAI: GPT-4o, GPT-4o-mini, GPT-4.1
  • Anthropic: Claude Sonnet 4.0, Claude Opus 4.1
  • Google: Gemini 2.5 Pro, Gemini Flash
  • Qwen: Qwen2.5-VL, Qwen3-VL, QVQ-max
  • Ollama: qwen2.5vl, llava

Images are automatically downloaded and converted to base64 data URIs.

Audio Requests

Send audio files to audio-capable models using the --audio option:

# Use defaults/audio Chat Template (Transcribe the audio)
llms --audio ./recording.mp3

# Local audio file
llms --audio ./meeting.wav "Summarize this meeting recording"

# Remote audio URL
llms --audio https://example.org/podcast.mp3 "What are the key points discussed?"

# With a specific audio model
llms -m gpt-4o-audio-preview --audio interview.mp3 "Extract the main topics"
llms -m gemini-2.5-flash --audio interview.mp3 "Extract the main topics"

# Combined with system prompt
llms -s "You're a transcription specialist" --audio talk.mp3 "Provide a detailed transcript"

# With custom chat template
llms --chat audio-request.json --audio speech.wav

Example of audio-request.json:

{
    "model": "gpt-4o-audio-preview",
    "messages": [
        {
            "role": "user",
            "content": [
                {
                    "type": "input_audio",
                    "input_audio": {
                        "data": "",
                        "format": "mp3"
                    }
                },
                {
                    "type": "text",
                    "text": "Please transcribe this audio"
                }
            ]
        }
    ]
}

Supported audio formats: MP3, WAV

Audio sources:

  • Local files: Absolute paths (/path/to/audio.mp3) or relative paths (./audio.wav, ../recording.m4a)
  • Remote URLs: HTTP/HTTPS URLs are automatically downloaded
  • Base64 Data: Base64-encoded audio

Audio files are automatically processed and converted to base64 data before being sent to the model.

Audio-Capable Models

Popular models that support audio processing:

  • OpenAI: gpt-4o-audio-preview
  • Google: gemini-2.5-pro, gemini-2.5-flash, gemini-2.5-flash-lite

Audio files are automatically downloaded and converted to base64 data URIs with appropriate format detection.

File Requests

Send documents (e.g. PDFs) to file-capable models using the --file option:

# Use defaults/file Chat Template (Summarize the document)
llms --file ./docs/handbook.pdf

# Local PDF file
llms --file ./docs/policy.pdf "Summarize the key changes"

# Remote PDF URL
llms --file https://example.org/whitepaper.pdf "What are the main findings?"

# With specific file-capable models
llms -m gpt-5               --file ./policy.pdf   "Summarize the key changes"
llms -m gemini-flash-latest --file ./report.pdf   "Extract action items"
llms -m qwen2.5vl           --file ./manual.pdf   "List key sections and their purpose"

# Combined with system prompt
llms -s "You're a compliance analyst" --file ./policy.pdf "Identify compliance risks"

# With custom chat template
llms --chat file-request.json --file ./docs/handbook.pdf

Example of file-request.json:

{
  "model": "gpt-5",
  "messages": [
    {
      "role": "user",
      "content": [
        {
          "type": "file",
          "file": {
            "filename": "",
            "file_data": ""
          }
        },
        {
          "type": "text",
          "text": "Please summarize this document"
        }
      ]
    }
  ]
}

Supported file formats: PDF

Other document types may work depending on the model/provider.

File sources:

  • Local files: Absolute paths (/path/to/file.pdf) or relative paths (./file.pdf, ../file.pdf)
  • Remote URLs: HTTP/HTTPS URLs are automatically downloaded
  • Base64/Data URIs: Inline data:application/pdf;base64,... is supported

Files are automatically downloaded (for URLs) and converted to base64 data URIs before being sent to the model.

File-Capable Models

Popular multi-modal models that support file (PDF) inputs:

  • OpenAI: gpt-5, gpt-5-mini, gpt-4o, gpt-4o-mini
  • Google: gemini-flash-latest, gemini-2.5-flash-lite
  • Grok: grok-4-fast (OpenRouter)
  • Qwen: qwen2.5vl, qwen3-max, qwen3-vl:235b, qwen3-coder, qwen3-coder-flash (OpenRouter)
  • Others: kimi-k2, glm-4.5-air, deepseek-v3.1:671b, llama4:400b, llama3.3:70b, mai-ds-r1, nemotron-nano:9b

Server Mode

Run as an OpenAI-compatible HTTP server:

# Start server on port 8000
llms --serve 8000

The server exposes a single endpoint:

  • POST /v1/chat/completions - OpenAI-compatible chat completions

Example client usage:

curl -X POST http://localhost:8000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "kimi-k2",
    "messages": [
      {"role": "user", "content": "Hello!"}
    ]
  }'

Configuration Management

# List enabled providers and models
llms --list
llms ls

# List specific providers
llms ls ollama
llms ls google anthropic

# Enable providers
llms --enable openrouter
llms --enable anthropic google_free groq

# Disable providers
llms --disable ollama
llms --disable openai anthropic

# Set default model
llms --default grok-4

Update

  1. Installed from PyPI
pip install llms-py --upgrade
  1. Using Direct Download
# Update to latest version (Downloads latest llms.py)
llms --update

Advanced Options

# Use custom config file
llms --config /path/to/config.json "Hello"

# Get raw JSON response
llms --raw "What is 2+2?"

# Enable verbose logging
llms --verbose "Tell me a joke"

# Custom log prefix
llms --verbose --logprefix "[DEBUG] " "Hello world"

# Set default model (updates config file)
llms --default grok-4

# Update llms.py to latest version
llms --update

Default Model Configuration

The --default MODEL option allows you to set the default model used for all chat completions. This updates the defaults.text.model field in your configuration file:

# Set default model to gpt-oss
llms --default gpt-oss:120b

# Set default model to Claude Sonnet
llms --default claude-sonnet-4-0

# The model must be available in your enabled providers
llms --default gemini-2.5-pro

When you set a default model:

  • The configuration file (~/.llms/llms.json) is automatically updated
  • The specified model becomes the default for all future chat requests
  • The model must exist in your currently enabled providers
  • You can still override the default using -m MODEL for individual requests

Updating llms.py

The --update option downloads and installs the latest version of llms.py from the GitHub repository:

# Update to latest version
llms --update

This command:

  • Downloads the latest llms.py from https://raw.githubusercontent.com/ServiceStack/llms/refs/heads/main/llms.py
  • Overwrites your current llms.py file with the latest version
  • Preserves your existing configuration file (llms.json)
  • Requires an internet connection to download the update

Beautiful rendered Markdown

Pipe Markdown output to glow to beautifully render it in the terminal:

llms "Explain quantum computing" | glow

Supported Providers

OpenAI

  • Type: OpenAiProvider
  • Models: GPT-5, GPT-5 Codex, GPT-4o, GPT-4o-mini, o3, etc.
  • Features: Text, images, function calling
export OPENAI_API_KEY="your-key"
llms --enable openai

Anthropic (Claude)

  • Type: OpenAiProvider
  • Models: Claude Opus 4.1, Sonnet 4.0, Haiku 3.5, etc.
  • Features: Text, images, large context windows
export ANTHROPIC_API_KEY="your-key"
llms --enable anthropic

Google Gemini

  • Type: GoogleProvider
  • Models: Gemini 2.5 Pro, Flash, Flash-Lite
  • Features: Text, images, safety settings
export GOOGLE_API_KEY="your-key"
llms --enable google_free

Groq

  • Type: OpenAiProvider
  • Models: Llama 3.3, Gemma 2, Kimi K2, etc.
  • Features: Fast inference, competitive pricing
export GROQ_API_KEY="your-key"
llms --enable groq

Ollama (Local)

  • Type: OllamaProvider
  • Models: Auto-discovered from local Ollama installation
  • Features: Local inference, privacy, no API costs
# Ollama must be running locally
llms --enable ollama

OpenRouter

  • Type: OpenAiProvider
  • Models: 100+ models from various providers
  • Features: Access to latest models, free tier available
export OPENROUTER_API_KEY="your-key"
llms --enable openrouter

Mistral

  • Type: OpenAiProvider
  • Models: Mistral Large, Codestral, Pixtral, etc.
  • Features: Code generation, multilingual
export MISTRAL_API_KEY="your-key"
llms --enable mistral

Grok (X.AI)

  • Type: OpenAiProvider
  • Models: Grok-4, Grok-3, Grok-3-mini, Grok-code-fast-1, etc.
  • Features: Real-time information, humor, uncensored responses
export GROK_API_KEY="your-key"
llms --enable grok

Qwen (Alibaba Cloud)

  • Type: OpenAiProvider
  • Models: Qwen3-max, Qwen-max, Qwen-plus, Qwen2.5-VL, QwQ-plus, etc.
  • Features: Multilingual, vision models, coding, reasoning, audio processing
export DASHSCOPE_API_KEY="your-key"
llms --enable qwen

Model Routing

The tool automatically routes requests to the first available provider that supports the requested model. If a provider fails, it tries the next available provider with that model.

Example: If both OpenAI and OpenRouter support kimi-k2, the request will first try OpenRouter (free), then fall back to Groq than OpenRouter (Paid) if requests fails.

Environment Variables

Variable Description Example
LLMS_CONFIG_PATH Custom config file path /path/to/llms.json
OPENAI_API_KEY OpenAI API key sk-...
ANTHROPIC_API_KEY Anthropic API key sk-ant-...
GOOGLE_API_KEY Google API key AIza...
GROQ_API_KEY Groq API key gsk_...
MISTRAL_API_KEY Mistral API key ...
OPENROUTER_API_KEY OpenRouter API key sk-or-...
OPENROUTER_FREE_API_KEY OpenRouter free tier key sk-or-...
CODESTRAL_API_KEY Codestral API key ...
GROK_API_KEY Grok (X.AI) API key xai-...
DASHSCOPE_API_KEY Qwen (Alibaba Cloud) API key sk-...

Configuration Examples

Minimal Configuration

{
  "defaults": {
    "headers": {"Content-Type": "application/json"},
    "text": {
      "model": "kimi-k2",
      "messages": [{"role": "user", "content": ""}]
    }
  },
  "providers": {
    "groq": {
      "enabled": true,
      "type": "OpenAiProvider",
      "base_url": "https://api.groq.com/openai",
      "api_key": "$GROQ_API_KEY",
      "models": {
        "llama3.3:70b": "llama-3.3-70b-versatile",
        "llama4:109b": "meta-llama/llama-4-scout-17b-16e-instruct",
        "llama4:400b": "meta-llama/llama-4-maverick-17b-128e-instruct",
        "kimi-k2": "moonshotai/kimi-k2-instruct-0905",
        "gpt-oss:120b": "openai/gpt-oss-120b",
        "gpt-oss:20b": "openai/gpt-oss-20b",
        "qwen3:32b": "qwen/qwen3-32b"
      }
    }
  }
}

Multi-Provider Setup

{
  "providers": {
    "openrouter": {
      "enabled": false,
      "type": "OpenAiProvider",
      "base_url": "https://openrouter.ai/api",
      "api_key": "$OPENROUTER_API_KEY",
      "models": {
        "grok-4": "x-ai/grok-4",
        "glm-4.5-air": "z-ai/glm-4.5-air",
        "kimi-k2": "moonshotai/kimi-k2",
        "deepseek-v3.1:671b": "deepseek/deepseek-chat",
        "llama4:400b": "meta-llama/llama-4-maverick"
      }
    },
    "anthropic": {
      "enabled": false,
      "type": "OpenAiProvider",
      "base_url": "https://api.anthropic.com",
      "api_key": "$ANTHROPIC_API_KEY",
      "models": {
        "claude-sonnet-4-0": "claude-sonnet-4-0"
      }
    },
    "ollama": {
      "enabled": false,
      "type": "OllamaProvider",
      "base_url": "http://localhost:11434",
      "models": {},
      "all_models": true
    }
  }
}

Usage

Run `llms` without arguments to see the help screen:

usage: llms.py [-h] [--config FILE] [-m MODEL] [--chat REQUEST] [-s PROMPT] [--image IMAGE] [--audio AUDIO]
              [--file FILE] [--raw] [--list] [--serve PORT] [--enable PROVIDER] [--disable PROVIDER]
              [--default MODEL] [--init] [--logprefix PREFIX] [--verbose] [--update]

llms

options:
  -h, --help            show this help message and exit
  --config FILE         Path to config file
  -m MODEL, --model MODEL
                        Model to use
  --chat REQUEST        OpenAI Chat Completion Request to send
  -s PROMPT, --system PROMPT
                        System prompt to use for chat completion
  --image IMAGE         Image input to use in chat completion
  --audio AUDIO         Audio input to use in chat completion
  --file FILE           File input to use in chat completion
  --raw                 Return raw AI JSON response
  --list                Show list of enabled providers and their models (alias ls provider?)
  --serve PORT          Port to start an OpenAI Chat compatible server on
  --enable PROVIDER     Enable a provider
  --disable PROVIDER    Disable a provider
  --default MODEL       Configure the default model to use
  --init                Create a default llms.json
  --logprefix PREFIX    Prefix used in log messages
  --verbose             Verbose output
  --update              Update to latest version

Troubleshooting

Common Issues

Config file not found

# Initialize default config
llms --init

# Or specify custom path
llms --config ./my-config.json

No providers enabled

# Check status
llms --list

# Enable providers
llms --enable google anthropic

API key issues

# Check environment variables
echo $ANTHROPIC_API_KEY

# Enable verbose logging
llms --verbose "test"

Model not found

# List available models
llms --list

# Check provider configuration
llms ls openrouter

Debug Mode

Enable verbose logging to see detailed request/response information:

llms --verbose --logprefix "[DEBUG] " "Hello"

This shows:

  • Enabled providers
  • Model routing decisions
  • HTTP request details
  • Error messages with stack traces

Development

Project Structure

  • llms.py - Main script with CLI and server functionality
  • llms.json - Default configuration file
  • requirements.txt - Python dependencies

Provider Classes

  • OpenAiProvider - Generic OpenAI-compatible provider
  • OllamaProvider - Ollama-specific provider with model auto-discovery
  • GoogleProvider - Google Gemini with native API format
  • GoogleOpenAiProvider - Google Gemini via OpenAI-compatible endpoint

Adding New Providers

  1. Create a provider class inheriting from OpenAiProvider
  2. Implement provider-specific authentication and formatting
  3. Add provider configuration to llms.json
  4. Update initialization logic in init_llms()

Contributing

Contributions are welcome! Please submit a PR to add support for any missing OpenAI-compatible providers.

About

llm client, server and agent

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published