That's why I decided to start a project of reading and summarizing two AI papers every week, covering a wide range of topics and methods. I will post my notes and insights on this notion page, which is open to anyone who is interested in AI research. You can find the papers I have read so far, along with links to the full texts, in the table below. I hope you will find this resource useful and informative, and feel free to leave your comments and feedback.
If you want to connect with me/contribute:
Email: [email protected].
LinkedIn: Sheiphan Joseph | LinkedIn
- A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications (link)
- A Survey of Large Language Models (link)
- SMALL LANGUAGE MODELS: SURVEY, MEASUREMENTS, AND INSIGHTS (link)
- Datasets for Large Language Models: A Comprehensive Survey (link)
- A Survey on LoRA of Large Language Model (link)
- A Survey of Low-bit Large Language Models (link)
- Autoregressive Models in VisionL: A Survey (link)
- The Ultimate Guide to Fine-Tuning LLMs (link)
- LOSS FUNCTIONS AND METRICS IN DEEP LEARNING (link)
- Multi-column Deep Neural Networks for Image Classification
- ImageNet Classification with Deep Convolutional Neural Networks (code)
- Dropout: A Simple Way to Prevent Neural Networks from Overfitting (code)
- Network In Network
- Very Deep Convolutional Networks for Large-Scale Image Recognition (code)
- Going Deeper with Convolutions
- Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
- Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
- Rethinking the Inception Architecture for Computer Vision
- Training Very Deep Networks
- Deep Residual Learning for Image Recognition (code)
- Identity Mappings in Deep Residual Networks (code)
- Deep Networks with Stochastic Depth (code)
- Wide Residual Networks (code)
- Aggregated Residual Transformations for Deep Neural Networks (code)
- Densely Connected Convolutional Networks (code)
- Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
- mixup: Beyond Empirical Risk Minimization (code)
- Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour (code)
- SGDR: Stochastic Gradient Descent with Warm Restarts (code)
- Decoupled Weight Decay Regularization (code)
- Residual Attention Network for Image Classification
- Squeeze-and-Excitation Networks (code)
- CBAM: Convolutional Block Attention Module (code)
- ResNeSt: Split-Attention Networks (code)
- Random Erasing Data Augmentation (code)
- CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features (code)
- Neural Ordinary Differential Equations (code)
- Spatial Transformer Networks
- Dynamic Routing Between Capsules
- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (code)
- MLP-Mixer: An all-MLP Architecture for Vision (code)
- Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
- High-Performance Large-Scale Image Recognition Without Normalization (code)
- A ConvNet for the 2020s (code)
- Distilling the Knowledge in a Neural Network
- Learning both Weights and Connections for Efficient Neural Networks
- Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding (code)
- SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size (code)
- XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks (code)
- MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (code)
- Xception: Deep Learning with Depthwise Separable Convolutions (code)
- MobileNetV2: Inverted Residuals and Linear Bottlenecks (code)
- ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices (code)
- ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
- CSPNet: A New Backbone that can Enhance Learning Capability of CNN (code) (code)
- Neural Architecture Search With Reinforcement Learning (code)
- Learning Transferable Architectures for Scalable Image Recognition
- Regularized Evolution for Image Classifier Architecture Search (code)
- Evolving Deep Neural Networks
- Efficient Neural Architecture Search via Parameter Sharing (code)
- DARTS: Differentiable Architecture Search (code)
- EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks (code)
- MnasNet: Platform-Aware Neural Architecture Search for Mobile (code)
- Searching for MobileNetV3
- Designing Network Design Spaces (code)
- AutoAugment: Learning Augmentation Strategies from Data
- RandAugment: Practical Automated Data Augmentation with a Reduced Search Space
- Intriguing properties of neural networks
- Explaining and harnessing adversarial examples
- Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
- DeepFool: a simple and accurate method to fool deep neural networks (code)
- Adversarial Examples in the Physical World
- The Limitations of Deep Learning in Adversarial Settings
- Practical Black-Box Attacks against Machine Learning
- Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
- Towards Evaluating the Robustness of Neural Networks (code)
- Towards Deep Learning Models Resistant to Adversarial Attacks (code)
- Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples (code)
- Ensemble Adversarial Training: Attacks and Defenses (code)
- One Pixel Attack for Fooling Deep Neural Networks
- Visualizing and Understanding Convolutional Networks
- Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
- Striving for Simplicity: The All Convolutional Net
- Methods for interpreting and understanding deep neural networks (code)
- “Why Should I Trust You?” Explaining the Predictions of Any Classifier (code)
- Learning Deep Features for Discriminative Localization (code)
- Understanding Deep Learning Requires Rethinking Generalization
- Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization (code)
- A Unified Approach to Interpreting Model Predictions (code)
- Learning Important Features Through Propagating Activation Differences (code)
- Axiomatic Attribution for Deep Networks (code)
- On Calibration of Modern Neural Networks (code)
- Understanding the role of individual units in a deep neural network (code)
- Do Vision Transformers See Like Convolutional Neural Networks?
- How transferable are features in deep neural networks? (code)
- DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition (code)
- CNN Features off-the-shelf: an Astounding Baseline for Recognition
- Return of the Devil in the Details: Delving Deep into Convolutional Nets (code)
- Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks (code)
- Fully Convolutional Networks for Semantic Segmentation (code)
- Learning Deconvolution Network for Semantic Segmentation (code)
- U-Net: Convolutional Networks for Biomedical Image Segmentation (code)
- DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs (code)
- Conditional Random Fields as Recurrent Neural Networks (code)
- Multi-scale Context Aggregation by Dilated Convolutions (code)
- SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
- Pyramid Scene Parsing Network (code)
- Rethinking Atrous Convolution for Semantic Image Segmentation
- What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
- RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation (code)
- Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation (code)
- Dual Attention Network for Scene Segmentation (code)
- Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers (code) (code)
- Learning a Deep Convolutional Network for Image Super-Resolution (code)
- Perceptual Losses for Real-Time Style Transfer and Super-Resolution
- Image Style Transfer Using Convolutional Neural Networks (code)
- Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization (code)
- Accurate Image Super-Resolution Using Very Deep Convolutional Networks (code)
- Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
- Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising (code)
- Enhanced Deep Residual Networks for Single Image Super-Resolution (code)
- Deep Image Prior (code)
- Residual Dense Network for Image Super-Resolution (code)
- Image Super-Resolution Using Very Deep Residual Channel Attention Networks (code)
- The Unreasonable Effectiveness of Deep Features as a Perceptual Metric (code)
- Colorful Image Colorization (code)
- DeepPose: Human Pose Estimation via Deep Neural Networks
- Convolutional Pose Machines (code)
- Stacked Hourglass Networks for Human Pose Estimation (code)
- Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields (code)
- Deep High-Resolution Representation Learning for Human Pose Estimation (code)
- FlowNet: Learning Optical Flow with Convolutional Networks
- FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks (code)
- PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume (code)
- Depth Map Prediction from a Single Image using a Multi-Scale Deep Network
- Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture (code)
- Unsupervised Monocular Depth Estimation with Left-Right Consistency (code)
- Unsupervised Learning of Depth and Ego-Motion from Video (code)
- Robust Consistent Video Depth Estimation (code)
- A Survey on Performance Metrics for Object-Detection Algorithms (code)
- Rich feature hierarchies for accurate object detection and semantic segmentation (code)
- Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
- Fast R-CNN (code)
- Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks (code)
- R-FCN: Object Detection via Region-based Fully Convolutional Networks (code)
- Feature Pyramid Networks for Object Detection
- Deformable Convolutional Networks (code)
- Mask R-CNN (code)
- Cascade R-CNN: Delving into High Quality Object Detection (code)
- OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks (code)
- You Only Look Once: Unified, Real-Time Object Detection (code)
- SSD: Single Shot MultiBox Detector (code)
- YOLO9000: Better, Faster, Stronger (code)
- Focal Loss for Dense Object Detection (code)
- Speed/Accuracy Trade-Offs For Modern Convolutional Object Detectors
- YOLOv3: An Incremental Improvement (code)
- CornerNet: Detecting Objects as Paired Keypoints (code)
- FCOS: Fully Convolutional One-Stage Object Detection (code)
- Objects as Points (code)
- EfficientDet: Scalable and Efficient Object Detection (code)
- YOLOv4: Optimal Speed and Accuracy of Object Detection (code)
- End-to-End Object Detection with Transformers (code)
- Deformable DETR: Deformable Transformers for End-to-End Object Detection (code)
- DeepFace: Closing the Gap to Human-Level Performance in Face Verification
- FaceNet: A Unified Embedding for Face Recognition and Clustering
- Deep Face Recognition
- Deep Learning Face Attributes in the Wild
- Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks (code)
- A Discriminative Feature Learning Approach for Deep Face Recognition
- In Defense of the Triplet Loss for Person Re-Identification (code)
- SphereFace: Deep Hypersphere Embedding for Face Recognition (code)
- ArcFace: Additive Angular Margin Loss for Deep Face Recognition (code)
- 3D Convolutional Neural Networks for Human Action Recognition
- Large-scale Video Classification with Convolutional Neural Networks (code)
- Two-Stream Convolutional Networks for Action Recognition in Videos
- Learning Spatiotemporal Features with 3D Convolutional Networks (code)
- Action Recognition with Trajectory-Pooled Deep-Convolutional Descriptors (code)
- Temporal Segment Networks: Towards Good Practices for Deep Action Recognition (code)
- Convolutional Two-Stream Network Fusion for Video Action Recognition (code)
- Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset (code)
- A Closer Look at Spatiotemporal Convolutions for Action Recognition (code)
- Non-local Neural Networks (code)
- Group Normalization (code)
- SlowFast Networks for Video Recognition (code)
- Learning Multi-Domain Convolutional Neural Networks for Visual Tracking (code)
- Fully-Convolutional Siamese Networks for Object Tracking (code)
- V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation (code)
- PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation (code)
- PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space (code)
- Dynamic Graph CNN for Learning on Point Clouds (code)
- Point Transformer
- VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
- NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (code)
- Linguistic Regularities in Continuous Space Word Representations
- Distributed Representations of Words and Phrases and their Compositionality
- Efficient Estimation of Word Representations in Vector Space (code)
- GloVe: Global Vectors for Word Representation (code)
- Enriching Word Vectors with Subword Information (code)
- Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank (code)
- Convolutional Neural Networks for Sentence Classification (code)
- Distributed Representations of Sentences and Documents
- Effective Use of Word Order for Text Categorization with Convolutional Neural Networks (code)
- A Convolutional Neural Network for Modelling Sentences
- A Sensitivity Analysis Of (And Practitioners' Guide To) Convolutional Neural Networks For Sentence Classification
- Character-level Convolutional Networks for Text Classification (code)
- Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks (code)
- Bag Of Tricks For Efficient Text Classification (code)
- Hierarchical Attention Networks for Document Classification
- Bidirectional LSTM-CRF Models for Sequence Tagging
- Neural Architectures For Named Entity Recognition (code) (code)
- End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF
- Universal Language Model Fine-tuning for Text Classification (code)
- Neural Machine Translation by Jointly Learning to Align and Translate
- Sequence to Sequence Learning with Neural Networks
- Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation
- On the Properties of Neural Machine Translation: Encoder–Decoder Approaches
- Effective Approaches to Attention-based Neural Machine Translation (code)
- Neural Machine Translation Of Rare Words With Subword Units (code)
- Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
- Convolutional Sequence to Sequence Learning (code)
- Attention Is All You Need (code)
- SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing (code)
- Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates
- Reformer: The Efficient Transformer (code)
- Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention (code)
- Rethinking Attention with Performers (code)
- Deep contextualized word representations (code)
- An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling (code)
- Improving Language Understanding by Generative Pre-Training (code)
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (code)
- Language Models are Unsupervised Multitask Learners (code)
- ALBERT: A Lite BERT for Self-supervised Learning of Language Representations (code)
- RoBERTa: A Robustly Optimized BERT Pretraining Approach (code)
- DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter (code) (code)
- Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (code)
- XLNet: Generalized Autoregressive Pretraining for Language Understanding (code)
- Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer (code)
- Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks (code)
- Cross-lingual Language Model Pretraining (code)
- Unsupervised Cross-lingual Representation Learning at Scale (code)
- SpanBERT: Improving Pre-training by Representing and Predicting Spans (code)
- BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
- Longformer: The Long-Document Transformer (code)
- Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks (code)
- Language Models are Few-Shot Learners (code)
- ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators (code)
- SimCSE: Simple Contrastive Learning of Sentence Embeddings (code)
- Pay Attention to MLPs
- Evaluating Large Language Models Trained on Code (code)
- The Curious Case of Neural Text Degeneration (code)
- Long-term Recurrent Convolutional Networks for Visual Recognition and Description
- Show and Tell: A Neural Image Caption Generator
- Deep Visual-Semantic Alignments for Generating Image Descriptions
- Show, Attend and Tell: Neural Image Caption Generation with Visual Attention (code)
- Layer Normalization
- Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering (code)
- Generative Adversarial Text to Image Synthesis (code)
- StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks (code)
- Learning Transferable Visual Models From Natural Language Supervision (code)
- Zero-Shot Text-to-Image Generation (code)
- Perceiver IO: A General Architecture for Structured Inputs & Outputs (code)
- Auto-Encoding Variational Bayes
- Stochastic Backpropagation and Approximate Inference in Deep Generative Models
- beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework
- Categorical Reparameterization with Gumbel-Softmax
- Generative Adversarial Nets (code)
- Unsupervised representation learning with deep convolutional generative adversarial networks (code)
- Improved Techniques for Training GANs (code)
- InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets (code)
- Least Squares Generative Adversarial Networks (code)
- Wasserstein GAN (code)
- Improved Training of Wasserstein GANs (code)
- Progressive growing of GANs for improved quality, stability, and variation (code)
- GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium (code)
- Spectral Normalization for Generative Adversarial Networks (code)
- Large Scale GAN Training for High Fidelity Natural Image Synthesis (code)
- A Style-Based Generator Architecture for Generative Adversarial Networks (code)
- Self-Attention Generative Adversarial Networks (code)
- Analyzing and Improving the Image Quality of StyleGAN (code)
- Conditional Generative Adversarial Nets
- Context Encoders: Feature Learning by Inpainting (code)
- Conditional Image Synthesis with Auxiliary Classifier GANs
- Image-to-Image Translation with Conditional Adversarial Networks (code)
- Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks (code)
- Unsupervised Image-to-Image Translation Networks (code)
- Multimodal Unsupervised Image-to-Image Translation (code)
- Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
- ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks (code)
- High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs (code)
- StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation (code)
- Semantic Image Synthesis with Spatially-Adaptive Normalization (code)
- Denoising Diffusion Probabilistic Models (code)
- Diffusion Models Beat GANs on Image Synthesis (code)
- Score-Based Generative Modeling through Stochastic Differential Equations (code)
- Learning Transferable Features with Deep Adaptation Networks (code)
- Domain-Adversarial Training of Neural Networks (code)
- Adversarial Discriminative Domain Adaptation
- Unsupervised Pixel–Level Domain Adaptation with Generative Adversarial Networks
- CyCADA: Cycle-Consistent Adversarial Domain Adaptation (code)
- Matching Networks for One Shot Learning
- Prototypical Networks for Few-shot Learning (code)
- Learning to Compare: Relation Network for Few-Shot Learning
- Communication-Efficient Learning of Deep Networks from Decentralized Data
- Federated Learning: Strategies for Improving Communication Efficiency
- How To Backdoor Federated Learning (code)
- Deep Learning with Differential Privacy
- Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning (code) (code)
- Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results (code)
- MixMatch: A Holistic Approach to Semi-Supervised Learning (code)
- Self-training with Noisy Student improves ImageNet classification (code)
- FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence (code)
- Training data-efficient image transformers & distillation through attention (code) (code)
- Deep Clustering for Unsupervised Learning of Visual Features (code)
- Data-Efficient Image Recognition with Contrastive Predictive Coding
- Contrastive Multiview Coding (code)
- Momentum Contrast for Unsupervised Visual Representation Learning (code)
- Self-Supervised Learning of Pretext-Invariant Representations (code)
- A Simple Framework for Contrastive Learning of Visual Representations (code)
- Supervised Contrastive Learning (code) (code)
- Big Self-Supervised Models are Strong Semi-Supervised Learners (code) (data)
- Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning (code)
- Unsupervised Learning of Visual Features by Contrasting Cluster Assignments (code)
- Exploring Simple Siamese Representation Learning (code)
- Emerging Properties in Self-Supervised Vision Transformers (code)
- BEIT: BERT Pre-Training of Image Transformers (code)
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning (code)
- DiT: Self-supervised Pre-training for Document Image Transformer (code) (code)
- Unsupervised Semantic Segmentation By Distilling Feature Correspondences (code)
- Mel-Spectrogram and Mel-Frequency Cepstral Coefficients (MFCCs)
- Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks
- Speech Recognition with Deep Recurrent Neural Networks
- Towards End-to-End Speech Recognition with Recurrent Neural Networks
- Deep Speech: Scaling up end-to-end speech recognition
- LSTM: A Search Space Odyssey
- Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin
- X-vectors: Robust DNN Embeddings for Speaker Recognition (code)
- SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition
- Jasper: An End-to-End Convolutional Neural Acoustic Model (code)
- Generating Sequences With Recurrent Neural Networks
- Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling (code)
- WaveNet: A Generative Model for Raw Audio
- HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis (code) (code) (code) (code) (code) (code)
- Representation Learning with Contrastive Predictive Coding
- wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations (code)
- HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units (code) (code)
- data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language (code)
- Generative Spoken Dialogue Language Modeling (code) (code) (code)
- Playing Atari with Deep Reinforcement Learning
- Human-level Control through Deep Reinforcement Learning
- Deep Reinforcement Learning with Double Q-Learning
- Prioritized Experience Replay
- Dueling Network Architectures for Deep Reinforcement Learning
- Rainbow: Combining Improvements in Deep Reinforcement Learning
- Mastering the game of Go with deep neural networks and tree search
- Mastering the game of Go without human knowledge
- A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play
- Grandmaster level in StarCraft II using multi-agent reinforcement learning (code)
- Continuous Control with Deep Reinforcement Learning
- Trust Region Policy Optimization (code)
- Conjugate Gradient Method
- Asynchronous Methods for Deep Reinforcement Learning
- High-Dimensional Continuous Control Using Generalized Advantage Estimation
- Proximal Policy Optimization Algorithms
- Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor (code)
- End to End Learning for Self-Driving Cars
- End-To-End Training Of Deep Visuomotor Policies
- Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection
- Learning Dexterous In-Hand Manipulation
- Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning (code)
- Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
- Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (code) (code)
- Overcoming catastrophic forgetting in neural networks
- Translating Embeddings for Modeling Multi-relational Data (code)
- DeepWalk: Online Learning of Social Representations (code)
- LINE: Large-scale Information Network Embedding (code)
- node2vec: Scalable Feature Learning for Networks (code)
- Semi-Supervised Classification with Graph Convolutional Networks (code)
- Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering (code)
- Inductive Representation Learning on Large Graphs (code)
- Graph Attention Networks (code)
- How Powerful Are Graph Neural Networks? (code)
- Modeling Relational Data with Graph Convolutional Networks (code)
- Session-based Recommendations with Recurrent Neural Networks (code)
- AutoRec: Autoencoders Meet Collaborative Filtering
- Wide & Deep Learning for Recommender Systems
- Neural Collaborative Filtering (code)
- Neural Factorization Machines for Sparse Predictive Analytics (code)
- DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
- Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks (code)
- Variational Autoencoders for Collaborative Filtering (code)
- Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding (code)
- Deep Learning Recommendation Model for Personalization and Recommendation Systems (code)
- Improved Protein Structure Prediction using Potentials from Deep Learning (code)
- Highly Accurate Protein Structure Prediction with AlphaFold (code)
- Beyond Text: Optimizing RAG with Multimodal Inputs for Industrial Applications (code)