- PyQt5
- qtDesigner
- openCV
- 绘画
- 画笔
- 油漆桶
- 直线
- 矩形
- 椭圆
- 橡皮擦
- 图片处理
- 旋转、翻转
- 亮度、饱和度、对比度、色调调节
- 灰度化
- 二值化
- 反相(反色)
- 浮雕
- 边缘检测
- 模糊
- 锐化
配置qtDesigner
配置UIC
采取双缓冲绘图方法
我们再添加一个辅助画布,如果正在绘图,也就是鼠标按键还没有释放的时候,就在这个辅助画布上绘图,只有当鼠标按键释放的时候,才在真正的画布上绘图
泛洪算法—Flood Fill,用于确定连接到多维数组中给定节点的区域。
基本原理就是从一个像素点出发,以此向周边的像素点扩充着色,直到图形的边界。
实现方法包括传统递归方式dfs、bfs和描绘线算法(Scanline Fill)等
在QImage上实现效率很低,因为getPixel操作很慢,可以进一步优化
def getPixel(x,y,pixels,w):
i = (x + (y * w)) * 4
return pixels[i:i + 3]
# 油漆桶
def floodFill(image,pos):
fillPositions = []
w, h = image.width(), image.height()
pixels = image.bits().asstring(w * h * 4)
targetColor = getPixel(pos.x(), pos.y(), pixels, w)
haveSeen = set()
queue = [(pos.x(), pos.y())]
while queue:
x, y = queue.pop()
if getPixel(x, y,pixels,w) == targetColor:
fillPositions.append((x,y))
queue.extend(getCardinalPoints(haveSeen, (x, y),w,h))
return fillPositions
def getCardinalPoints(haveSeen, centerPos,w,h):
points = []
cx, cy = centerPos
for x, y in [(1, 0), (0, 1), (-1, 0), (0, -1)]:
xx, yy = cx + x, cy + y
if (xx >= 0 and xx < w and yy >= 0 and yy < h and (xx, yy) not in haveSeen):
points.append((xx, yy))
haveSeen.add((xx, yy))
return points
参考Implementing QPainter flood fill in PyQt5/PySide
问题You might be loading **two sets of Qt binaries** into the same process
删除原有的opencv
pip3 uninstall opencv-python
安装opencv–headless版本
pip3 install opencv-contrib-python-headless
在使用opencv过程中需要传入QImage对象进行处理
QImage转化成opencv下的 MAT(numpy ndarray) 对象
def CvMatToQImage(cvMat):
if len(cvMat.shape) == 2:
rows, columns = cvMat.shape
bytesPerLine = columns
return QImage(cvMat.data, columns, rows, bytesPerLine, QImage.Format_Indexed8)
else:
rows, columns, channels = cvMat.shape
bytesPerLine = channels * columns
return QImage(cvMat.data, columns, rows, bytesPerLine, QImage.Format_RGBA8888)
MAT(numpy ndarray) 转QImage
def QImageToCvMat(incomingImage):
incomingImage = incomingImage.convertToFormat(QImage.Format_RGBA8888)
width = incomingImage.width()
height = incomingImage.height()
ptr = incomingImage.bits()
ptr.setsize(height * width * 4)
arr = np.frombuffer(ptr, np.uint8).reshape((height, width, 4))
return arr
参考Python 中如何将 Pyqt5 下的 QImage 对象转换成 PIL image 或 opencv MAT (numpy ndarray) 对象
https://www.cnblogs.com/lfri/p/10599420.html
https://blog.csdn.net/qq_43444349/article/details/106602543
https://www.pianshen.com/article/172962944/
https://blog.csdn.net/lzwarhang/article/details/93209166
EMAIL [email protected]
QQ 327137362