Skip to content

SuhoPark0706/TBSNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Task-Disruptive Background Suppression for Few-Shot Segmentation (TBSNet)

This is the official repository for the following paper:

Task-Disruptive Background Suppression for Few-Shot Segmentation [Arxiv]

Suho Park, SuBeen Lee, Sangeek Hyun, Hyun Seok Seong, Jae-Pil Heo
Accepted by AAAI 2024

Requirements

  • Python 3.7
  • PyTorch 1.5.1
  • cuda 10.1
  • tensorboard 1.14

Conda environment settings:

conda create -n TBS python=3.7
conda activate TBS

conda install pytorch=1.5.1 torchvision cudatoolkit=10.1 -c pytorch
conda install -c conda-forge tensorflow
pip install tensorboardX

Prepare Datasets

Download COCO2014 train/val images and annotations:

wget http://images.cocodataset.org/zips/train2014.zip
wget http://images.cocodataset.org/zips/val2014.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2014.zip

Download COCO2014 train/val annotations from Google Drive: [train2014.zip], [val2014.zip].(and locate both train2014/ and val2014/ under annotations/ directory).

Create a directory 'datasets' and appropriately place coco to have following directory structure:

datasets/
    └── COCO2014/           
        ├── annotations/
        │   ├── train2014/  # (dir.) training masks (from Google Drive) 
        │   ├── val2014/    # (dir.) validation masks (from Google Drive)
        │   └── ..some json files..
        ├── train2014/
        └── val2014/

Prepare backbones

Downloading the following pre-trained backbones:

  1. ResNet-50 pretrained on ImageNet-1K by TIMM
  2. ResNet-101 pretrained on ImageNet-1K by TIMM
  3. Swin-B pretrained on ImageNet by Swin-Transformer

Create a directory 'backbones' to place the above backbones. The overall directory structure should be like this:

../                         # parent directory
├── TBSNet/              # current (project) directory
│   ├── common/             # (dir.) helper functions
│   ├── data/               # (dir.) dataloaders and splits for each FSS dataset
│   ├── model/              # (dir.) implementation of DCAMA
│   ├── scripts/            # (dir.) Scripts for training and testing
│   ├── README.md           # intstruction for reproduction
│   ├── train.py            # code for training
│   └── test.py             # code for testing
├── datasets/               # (dir.) Few-Shot Segmentation Datasets
└── backbones/              # (dir.) Pre-trained backbones

Train and Test

sh ./scripts/train.sh
sh ./scripts/test.sh

BibTeX

If you find the repository or the paper useful, please use the following entry for citation.

@article{park2023task,
  title={Task-Disruptive Background Suppression for Few-Shot Segmentation},
  author={Park, Suho and Lee, SuBeen and Hyun, Sangeek and Seong, Hyun Seok and Heo, Jae-Pil},
  journal={arXiv preprint arXiv:2312.15894},
  year={2023}
}

Acknowledgement

The codebase builds on top of a opensource codebase. thanks for their great works!

About

Offical Code for TBSNet(AAAI 2024)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published