基于深度学习的图像分割。图像分割包括语义分割、实例分割、全景分割。
- FCN
- DeconvNet
- SegNet
- UNet
- PSPNet
- RefineNet
- GCN
- DeepLab(v1&v2&v3&v3+)
- PAN
- Auto-DeepLab
- NAS
- …
- Semantic Segmentation | Zhang Bin's Blog
- Segmentation - handong1587
- 语义分割 - Semantic Segmentation Papers - AIUAI
- mrgloom/awesome-semantic-segmentation
- guanfuchen/semseg - 常用的语义分割架构结构综述以及代码复现
- GeorgeSeif/Semantic-Segmentation-Suite - Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!
- guanfuchen/DeepNetModel - 记录每一个常用的深度模型结构的特点(图和代码)
- handong1587.github.io/2015-10-09-segmentation.md
- amusi/CVPR2019-Code: CVPR 2019 Paper with Code
- zziz/pwc: Papers with code. Sorted by stars
- amusi/daily-paper-computer-vision
常看到代码中定义:
R = 103.939
G = 116.779
B = 123.68
什么意思?请看这里一个回答:https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3#gistcomment-1616734
Also, there is no normalization done in the gist above. If you want accurate results, you better do those steps to any input image:
img = cv2.resize(cv2.imread('../../Downloads/cat2.jpg'), (224, 224)) mean_pixel = [103.939, 116.779, 123.68] img = img.astype(np.float32, copy=False) for c in range(3): img[:, :, c] = img[:, :, c] - mean_pixel[c] img = img.transpose((2,0,1)) img = np.expand_dims(img, axis=0)The mean pixel values are taken from the VGG authors, which are the values computed from the training dataset.
-
FDNet:学习全密集神经网络进行图像语义分割
《Learning Fully Dense Neural Networks for Image Semantic Segmentation》(AAAI 2019)
Date:2019 | Author:香港科技大学&微软亚洲研究院
-
基于MobileNetV3的DeepLab V3+语义分割
Mobile Deeplab-V3+ model for Segmentation
This project is used for deploying people segmentation model to mobile device and learning. The people segmentation android project is here. The model is...
arXiv:
-
遥感语义图像的边界损失
《Boundary Loss for Remote Sensing Imagery Semantic Segmentation》
Date:20190521 | Author: Aeronet
-
HRNet:(告别低分辨率网络,微软提出高分辨率深度神经网络HRNet)
《Deep High-Resolution Representation Learning for Human Pose Estimation》
arXiv:https://arxiv.org/abs/1902.09212
[1] Ke Sun, Bin Xiao, Dong Liu, Jingdong Wang: Deep High-Resolution Representation Learning for Human Pose Estimation. CVPR 2019
[2] https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
《Deep High-Resolution Representation Learning for Human Pose Estimation》的原作者不仅把这种高分辨率网络结构用于姿态估计,也在尝试用于其他方向。
不久前,作者在新论文《High-Resolution Representations for Labeling Pixels and Regions》中对网络结构进行了v2版本升级,给出了更多实验结果,更加验证了该网络结构的价值!
在计算机视觉目前最热门应用领域语义分割、目标检测、人脸特征点定位中,换用高分辨率网络结构的算法都获得了显著的精度提升!
-
《Hard Pixels Mining: Learning Using Privileged Information for Semantic Segmentation》
注:在NYU-v2数据集上,超越DeepLabV3+、PSPNet、RDFNet
Date:2019 Author:上海交通大学