Skip to content

🍞 基于深度学习方法的图像分割(含语义分割、实例分割、全景分割)。

Notifications You must be signed in to change notification settings

SupeNan/image_segmentation_dl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 

Repository files navigation

Image_Segmentation

基于深度学习的图像分割。图像分割包括语义分割、实例分割、全景分割。

语义分割模型

  • FCN
  • DeconvNet
  • SegNet
  • UNet
  • PSPNet
  • RefineNet
  • GCN
  • DeepLab(v1&v2&v3&v3+)
  • PAN
  • Auto-DeepLab
  • NAS

模型架构、代码复现等

语义分割论文

模型和复现

计算机视觉论文

代码实践

常看到代码中定义:

R = 103.939
G = 116.779
B = 123.68

什么意思?请看这里一个回答:https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3#gistcomment-1616734

Also, there is no normalization done in the gist above. If you want accurate results, you better do those steps to any input image:

    img = cv2.resize(cv2.imread('../../Downloads/cat2.jpg'), (224, 224))

     mean_pixel = [103.939, 116.779, 123.68]
     img = img.astype(np.float32, copy=False)
     for c in range(3):
         img[:, :, c] = img[:, :, c] - mean_pixel[c]
     img = img.transpose((2,0,1))
     img = np.expand_dims(img, axis=0)

The mean pixel values are taken from the VGG authors, which are the values computed from the training dataset.

最新:

  • FDNet:学习全密集神经网络进行图像语义分割

    《Learning Fully Dense Neural Networks for Image Semantic Segmentation》(AAAI 2019)

    Date:2019 | Author:香港科技大学&微软亚洲研究院

    arXiv:https://128.84.21.199/abs/1905.08929

  • 基于MobileNetV3的DeepLab V3+语义分割

    Mobile Deeplab-V3+ model for Segmentation

    This project is used for deploying people segmentation model to mobile device and learning. The people segmentation android project is here. The model is...

    arXiv:

  • 遥感语义图像的边界损失

    《Boundary Loss for Remote Sensing Imagery Semantic Segmentation》

    Date:20190521 | Author: Aeronet

    arXiv:https://arxiv.org/abs/1905.07852

  • HRNet:(告别低分辨率网络,微软提出高分辨率深度神经网络HRNet)

    《Deep High-Resolution Representation Learning for Human Pose Estimation》

    arXiv:https://arxiv.org/abs/1902.09212

    [1] Ke Sun, Bin Xiao, Dong Liu, Jingdong Wang: Deep High-Resolution Representation Learning for Human Pose Estimation. CVPR 2019

    [2] https://github.com/leoxiaobin/deep-high-resolution-net.pytorch

    [3] https://github.com/HRNet

    ——from:CVPR 2019 | 告别低分辨率网络,微软提出高分辨率深度神经网络HRNet

    《Deep High-Resolution Representation Learning for Human Pose Estimation》的原作者不仅把这种高分辨率网络结构用于姿态估计,也在尝试用于其他方向。

    不久前,作者在新论文《High-Resolution Representations for Labeling Pixels and Regions》中对网络结构进行了v2版本升级,给出了更多实验结果,更加验证了该网络结构的价值!

    在计算机视觉目前最热门应用领域语义分割、目标检测、人脸特征点定位中,换用高分辨率网络结构的算法都获得了显著的精度提升!

    arXiv:https://arxiv.org/abs/1904.04514

  • 《Hard Pixels Mining: Learning Using Privileged Information for Semantic Segmentation》

    注:在NYU-v2数据集上,超越DeepLabV3+、PSPNet、RDFNet

    Date:2019 Author:上海交通大学

    arXiv:https://arxiv.org/abs/1906.11437

About

🍞 基于深度学习方法的图像分割(含语义分割、实例分割、全景分割)。

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published