forked from rerun-io/rerun
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Dataframe queries 3: dense range (rerun-io#7341)
Implements the dense range dataframe APIs. Examples: ``` cargo r --all-features -p re_dataframe --example range -- /tmp/data.rrd /helix/structure/scaffolding/beads cargo r --all-features -p re_dataframe --example range -- /tmp/data.rrd /helix/structure/scaffolding/beads /helix/structure/scaffolding/** ``` ```rust use itertools::Itertools as _; use re_chunk_store::{ ChunkStore, ChunkStoreConfig, ComponentColumnDescriptor, RangeQueryExpression, Timeline, VersionPolicy, }; use re_dataframe::QueryEngine; use re_log_types::{ResolvedTimeRange, StoreKind}; fn main() -> anyhow::Result<()> { let args = std::env::args().collect_vec(); let get_arg = |i| { let Some(value) = args.get(i) else { eprintln!( "Usage: {} <path_to_rrd_with_position3ds> <entity_path_pov> [entity_path_expr]", args.first().map_or("$BIN", |s| s.as_str()) ); std::process::exit(1); }; value }; let path_to_rrd = get_arg(1); let entity_path_pov = get_arg(2).as_str(); let entity_path_expr = args.get(3).map_or("/**", |s| s.as_str()); let stores = ChunkStore::from_rrd_filepath( &ChunkStoreConfig::DEFAULT, path_to_rrd, VersionPolicy::Warn, )?; for (store_id, store) in &stores { if store_id.kind != StoreKind::Recording { continue; } let cache = re_dataframe::external::re_query::Caches::new(store); let engine = QueryEngine { store, cache: &cache, }; let query = RangeQueryExpression { entity_path_expr: entity_path_expr.into(), timeline: Timeline::log_tick(), time_range: ResolvedTimeRange::new(0, 30), pov: ComponentColumnDescriptor::new::<re_types::components::Position3D>( entity_path_pov.into(), ), }; let query_handle = engine.range(&query, None /* columns */); eprintln!("{query}:"); for batch in query_handle.into_iter() { eprintln!("{batch}"); } } Ok(()) } ``` * Fixes rerun-io#7284 --- Dataframe APIs PR series: - rerun-io#7338 - rerun-io#7339 - rerun-io#7340 - rerun-io#7341 - rerun-io#7345
- Loading branch information
Showing
5 changed files
with
327 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
use itertools::Itertools as _; | ||
|
||
use re_chunk_store::{ | ||
ChunkStore, ChunkStoreConfig, ComponentColumnDescriptor, RangeQueryExpression, Timeline, | ||
VersionPolicy, | ||
}; | ||
use re_dataframe::QueryEngine; | ||
use re_log_types::{ResolvedTimeRange, StoreKind}; | ||
|
||
fn main() -> anyhow::Result<()> { | ||
let args = std::env::args().collect_vec(); | ||
|
||
let get_arg = |i| { | ||
let Some(value) = args.get(i) else { | ||
eprintln!( | ||
"Usage: {} <path_to_rrd_with_position3ds> <entity_path_pov> [entity_path_expr]", | ||
args.first().map_or("$BIN", |s| s.as_str()) | ||
); | ||
std::process::exit(1); | ||
}; | ||
value | ||
}; | ||
|
||
let path_to_rrd = get_arg(1); | ||
let entity_path_pov = get_arg(2).as_str(); | ||
let entity_path_expr = args.get(3).map_or("/**", |s| s.as_str()); | ||
|
||
let stores = ChunkStore::from_rrd_filepath( | ||
&ChunkStoreConfig::DEFAULT, | ||
path_to_rrd, | ||
VersionPolicy::Warn, | ||
)?; | ||
|
||
for (store_id, store) in &stores { | ||
if store_id.kind != StoreKind::Recording { | ||
continue; | ||
} | ||
|
||
let cache = re_dataframe::external::re_query::Caches::new(store); | ||
let engine = QueryEngine { | ||
store, | ||
cache: &cache, | ||
}; | ||
|
||
let query = RangeQueryExpression { | ||
entity_path_expr: entity_path_expr.into(), | ||
timeline: Timeline::log_tick(), | ||
time_range: ResolvedTimeRange::new(0, 30), | ||
pov: ComponentColumnDescriptor::new::<re_types::components::Position3D>( | ||
entity_path_pov.into(), | ||
), | ||
}; | ||
|
||
let query_handle = engine.range(&query, None /* columns */); | ||
eprintln!("{query}:"); | ||
for batch in query_handle.into_iter() { | ||
eprintln!("{batch}"); | ||
} | ||
} | ||
|
||
Ok(()) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,259 @@ | ||
use std::{collections::VecDeque, sync::OnceLock}; | ||
|
||
use ahash::HashMap; | ||
use arrow2::{ | ||
array::{Array as ArrowArray, ListArray as ArrowListArray}, | ||
chunk::Chunk as ArrowChunk, | ||
datatypes::Schema as ArrowSchema, | ||
}; | ||
use itertools::Itertools; | ||
|
||
use re_chunk::{Chunk, LatestAtQuery, RangeQuery}; | ||
use re_chunk_store::{ColumnDescriptor, ComponentColumnDescriptor, RangeQueryExpression}; | ||
|
||
use crate::{QueryEngine, RecordBatch}; | ||
|
||
// --- | ||
|
||
/// A handle to a range query, ready to be executed. | ||
/// | ||
/// Cheaply created via [`QueryEngine::range`]. | ||
/// | ||
/// See [`RangeQueryHandle::next_page`]. | ||
// | ||
// TODO(cmc): pagination support | ||
// TODO(cmc): intra-timestamp decimation support | ||
pub struct RangeQueryHandle<'a> { | ||
/// Handle to the [`QueryEngine`]. | ||
pub(crate) engine: &'a QueryEngine<'a>, | ||
|
||
/// The original query expression used to instantiate this handle. | ||
pub(crate) query: RangeQueryExpression, | ||
|
||
/// The user-specified schema that describes any data returned through this handle, if any. | ||
pub(crate) user_columns: Option<Vec<ColumnDescriptor>>, | ||
|
||
/// Internal private state. Lazily computed. | ||
/// | ||
/// It is important that handles stay cheap to create. | ||
state: OnceLock<RangeQuerytHandleState>, | ||
} | ||
|
||
/// Internal private state. Lazily computed. | ||
struct RangeQuerytHandleState { | ||
/// The final schema. | ||
columns: Vec<ColumnDescriptor>, | ||
|
||
/// All the [`Chunk`]s for the active point-of-view. | ||
/// | ||
/// These are already sorted and vertically sliced according to the query. | ||
pov_chunks: Option<VecDeque<Chunk>>, | ||
} | ||
|
||
impl<'a> RangeQueryHandle<'a> { | ||
pub(crate) fn new( | ||
engine: &'a QueryEngine<'a>, | ||
query: RangeQueryExpression, | ||
user_columns: Option<Vec<ColumnDescriptor>>, | ||
) -> Self { | ||
Self { | ||
engine, | ||
query, | ||
user_columns, | ||
state: Default::default(), | ||
} | ||
} | ||
} | ||
|
||
impl RangeQueryHandle<'_> { | ||
/// Lazily initialize internal private state. | ||
/// | ||
/// It is important that handles stay cheap to create. | ||
fn init(&self) -> &RangeQuerytHandleState { | ||
self.state.get_or_init(|| { | ||
re_tracing::profile_scope!("init"); | ||
|
||
let columns = { | ||
re_tracing::profile_scope!("compute schema"); | ||
|
||
self.user_columns.clone().unwrap_or_else(|| { | ||
self.engine | ||
.store | ||
.schema_for_query(&self.query.clone().into()) | ||
}) | ||
}; | ||
|
||
let pov_chunks = { | ||
re_tracing::profile_scope!("gather pov timestamps"); | ||
|
||
let query = RangeQuery::new(self.query.timeline, self.query.time_range) | ||
.keep_extra_timelines(true) // we want all the timelines we can get! | ||
.keep_extra_components(false); | ||
|
||
let results = self.engine.cache.range( | ||
self.engine.store, | ||
&query, | ||
&self.query.pov.entity_path, | ||
[self.query.pov.component_name], | ||
); | ||
|
||
results | ||
.components | ||
.into_iter() | ||
.find_map(|(component_name, chunks)| { | ||
(component_name == self.query.pov.component_name).then_some(chunks) | ||
}) | ||
.map(Into::into) | ||
}; | ||
|
||
RangeQuerytHandleState { | ||
columns, | ||
pov_chunks, | ||
} | ||
}) | ||
} | ||
|
||
/// All results returned by this handle will strictly follow this schema. | ||
/// | ||
/// Columns that do not yield any data will still be present in the results, filled with null values. | ||
pub fn schema(&self) -> &[ColumnDescriptor] { | ||
&self.init().columns | ||
} | ||
|
||
/// Partially executes the range query until the next natural page of results. | ||
/// | ||
/// Returns a single [`RecordBatch`] containing as many rows as available in the page, or | ||
/// `None` if all the dataset has been returned. | ||
/// Each cell in the result corresponds to the latest known value at that particular point in time | ||
/// for each respective `ColumnDescriptor`. | ||
/// | ||
/// The schema of the returned [`RecordBatch`] is guaranteed to match the one returned by | ||
/// [`Self::schema`]. | ||
/// Columns that do not yield any data will still be present in the results, filled with null values. | ||
/// | ||
/// "Natural pages" refers to pages of data that match 1:1 to the underlying storage. | ||
/// The size of each page cannot be known in advance, as it depends on unspecified | ||
/// implementation details. | ||
/// This is the most performant way to iterate over the dataset. | ||
/// | ||
/// ```ignore | ||
/// while let Some(batch) = query_handle.next_page() { | ||
/// // … | ||
/// } | ||
/// ``` | ||
pub fn next_page(&mut self) -> Option<RecordBatch> { | ||
re_tracing::profile_function!(format!("{:?}", self.query)); | ||
|
||
_ = self.init(); | ||
let pov_chunk = self.state.get_mut()?.pov_chunks.as_mut()?.pop_front()?; | ||
let pov_time_column = pov_chunk.timelines().get(&self.query.timeline)?; | ||
let columns = self.schema(); | ||
|
||
// TODO(cmc): There are more efficient, albeit infinitely more complicated ways to do this. | ||
// Let's first implement all features (multi-PoV, pagination, timestamp streaming, etc) and | ||
// see if this ever becomes an issue before going down this road. | ||
// | ||
// TODO(cmc): Opportunities for parallelization, if it proves to be a net positive in practice. | ||
let list_arrays: HashMap<&ComponentColumnDescriptor, ArrowListArray<i32>> = { | ||
re_tracing::profile_scope!("queries"); | ||
|
||
columns | ||
.iter() | ||
.filter_map(|descr| match descr { | ||
ColumnDescriptor::Component(descr) => Some(descr), | ||
_ => None, | ||
}) | ||
.filter_map(|descr| { | ||
let arrays = pov_time_column | ||
.times() | ||
.map(|time| { | ||
let query = LatestAtQuery::new(self.query.timeline, time); | ||
|
||
let results = self.engine.cache.latest_at( | ||
self.engine.store, | ||
&query, | ||
&descr.entity_path, | ||
[descr.component_name], | ||
); | ||
|
||
results | ||
.components | ||
.get(&descr.component_name) | ||
.and_then(|unit| { | ||
unit.component_batch_raw(&descr.component_name).clone() | ||
}) | ||
}) | ||
.collect_vec(); | ||
let arrays = arrays | ||
.iter() | ||
.map(|array| array.as_ref().map(|array| &**array as &dyn ArrowArray)) | ||
.collect_vec(); | ||
|
||
let list_array = | ||
re_chunk::util::arrays_to_list_array(descr.datatype.clone(), &arrays); | ||
|
||
if cfg!(debug_assertions) { | ||
#[allow(clippy::unwrap_used)] // want to crash in dev | ||
Some((descr, list_array.unwrap())) | ||
} else { | ||
// NOTE: Technically cannot ever happen, but I'd rather that than an uwnrap. | ||
list_array.map(|list_array| (descr, list_array)) | ||
} | ||
}) | ||
.collect() | ||
}; | ||
|
||
// NOTE: Keep in mind this must match the ordering specified by `Self::schema`. | ||
let packed_arrays = { | ||
re_tracing::profile_scope!("packing"); | ||
|
||
columns | ||
.iter() | ||
.map(|descr| match descr { | ||
ColumnDescriptor::Control(_descr) => pov_chunk.row_ids_array().to_boxed(), | ||
|
||
ColumnDescriptor::Time(descr) => { | ||
let time_column = pov_chunk.timelines().get(&descr.timeline).cloned(); | ||
time_column.map_or_else( | ||
|| { | ||
arrow2::array::new_null_array( | ||
descr.datatype.clone(), | ||
pov_chunk.num_rows(), | ||
) | ||
}, | ||
|time_column| time_column.times_array().to_boxed(), | ||
) | ||
} | ||
|
||
ColumnDescriptor::Component(descr) => list_arrays.get(descr).map_or_else( | ||
|| { | ||
arrow2::array::new_null_array( | ||
descr.datatype.clone(), | ||
pov_time_column.num_rows(), | ||
) | ||
}, | ||
|list_array| list_array.to_boxed(), | ||
), | ||
}) | ||
.collect_vec() | ||
}; | ||
|
||
Some(RecordBatch { | ||
schema: ArrowSchema { | ||
fields: columns | ||
.iter() | ||
.map(ColumnDescriptor::to_arrow_field) | ||
.collect(), | ||
metadata: Default::default(), | ||
}, | ||
data: ArrowChunk::new(packed_arrays), | ||
}) | ||
} | ||
} | ||
|
||
impl<'a> RangeQueryHandle<'a> { | ||
#[allow(clippy::should_implement_trait)] // we need an anonymous closure, this won't work | ||
pub fn into_iter(mut self) -> impl Iterator<Item = RecordBatch> + 'a { | ||
std::iter::from_fn(move || self.next_page()) | ||
} | ||
} |