Skip to content

Lightspeed C++ Neural Network (UE) Inference Library for Chess

License

Notifications You must be signed in to change notification settings

TheBlackPlague/MantaRay

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

53 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MantaRay Banner

MantaRay - Lightspeed C++ Neural Network (UE) Inference Library for Chess


Features

  • MantaRay API: An Object-Oriented API for using neural networks in C++, compiled to data-oriented assembly for maximum performance.
  • Handwritten SIMD: MantaRay uses handwritten SIMD code over the auto-vectorization of the compiler to achieve maximum performance on latest hardware.
  • Data Permutation: MantaRay permutes the weights and biases of the network to achieve the maximum out of each cache line.

Installation

Requirements:

  • CMake 3.14+
  • Clang (LLVM 16) - Other versions may deliver suboptimal performance.

CMake Setup:

# Download CPM.cmake to easily install packages. Skip this step if you
# have already done so.
set(CPM_DOWNLOAD_VERSION 0.38.0)

if(CPM_SOURCE_CACHE)
    set(CPM_DOWNLOAD_LOCATION "${CPM_SOURCE_CACHE}/cpm/CPM_${CPM_DOWNLOAD_VERSION}.cmake")
elseif(DEFINED ENV{CPM_SOURCE_CACHE})
    set(CPM_DOWNLOAD_LOCATION "$ENV{CPM_SOURCE_CACHE}/cpm/CPM_${CPM_DOWNLOAD_VERSION}.cmake")
else()
    set(CPM_DOWNLOAD_LOCATION "${CMAKE_BINARY_DIR}/cmake/CPM_${CPM_DOWNLOAD_VERSION}.cmake")
endif()

if(NOT (EXISTS ${CPM_DOWNLOAD_LOCATION}))
    message(STATUS "Downloading CPM.cmake to ${CPM_DOWNLOAD_LOCATION}")
    file(DOWNLOAD 
            https://github.com/TheLartians/CPM.cmake/releases/download/v${CPM_DOWNLOAD_VERSION}/CPM.cmake
            ${CPM_DOWNLOAD_LOCATION}
            )
endif()

include(${CPM_DOWNLOAD_LOCATION})

# Add MantaRay as a CPM package. 
# This will download the MantaRay library and build it.
# gh:TheBlackPlague/MantaRay#<branch>
CPMAddPackage("gh:TheBlackPlague/MantaRay#master")

# Link to your target (could be library/executable).
target_link_libraries(<your-target> MantaRay)

Usage

MantaRay is designed to be easy to use. The following examples showcase the basic usage of the library.

  • Defining a network:
#include "Perspective/PerspectiveNNUE.h"

// Define the activation function:
// Format: ClippedReLU<Type, Min, Max>
using Activation = MantaRay::ClippedReLU<int16_t, 0, 255>;

// Define the network:
// Format: PerspectiveNetwork<InputType, OutputType, Activation, ...>
//                      <..., InputSize, HiddenSize, OutputSize, ...>
//                      <...,       AccumulatorStackSize,        ...>
//                      <..., Scale, QuantizationFeature, QuantizationOutput>
using NeuralNetwork = MantaRay::PerspectiveNetwork<int16_t, int32_t, Activation, 768, 256, 1, 512, 400, 255, 64>;
// Create the input stream:
MantaRay::MarlinflowStream stream("network.json");

// Create & load the network from the stream:
NeuralNetwork network(stream);
  • Loading Chess starting position into the network (done manually, but typically done via loop in engines):
// Pawns
for (int sq = 8; sq < 16; sq++) {
    network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Activate>(0, 0, sq);
    network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Activate>(0, 1, sq ^ 56);
}

// Knights
network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Activate>(1, 0, 1);
network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Activate>(1, 0, 6);
network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Activate>(1, 1, 1 ^ 56);
network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Activate>(1, 1, 6 ^ 56);

// Bishops
network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Activate>(2, 0, 2);
network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Activate>(2, 0, 5);
network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Activate>(2, 1, 2 ^ 56);
network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Activate>(2, 1, 5 ^ 56);

// Rooks
network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Activate>(3, 0, 0);
network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Activate>(3, 0, 7);
network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Activate>(3, 1, 0 ^ 56);
network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Activate>(3, 1, 7 ^ 56);

// Queen
network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Activate>(4, 0, 3);
network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Activate>(4, 1, 3 ^ 56);

// King
network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Activate>(5, 0, 4);
network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Activate>(5, 1, 4 ^ 56);
  • Efficient Accumulator Updates:
// Piece: 0-5 (Pawn, Knight, Bishop, Rook, Queen, King)
// Color: 0-1 (White, Black)
// Square: 0-63 (A1-H8)

// Push Accumulator (right before updating for MakeMove):
network.PushAccumulator();

// Pull Accumulator (to undo the updates done after PushAccumulator):
network.PullAccumulator();

// Inserting a piece:
// piece: Piece
// color: Color
// sq   : Square
network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Activate  >(piece, color, sq);

// Removing a piece:
// piece: Piece
// color: Color
// sq   : Square
network.EfficientlyUpdateAccumulator<MantaRay::AccumulatorOperation::Deactivate>(piece, color, sq);

// Moving a piece:
// piece: Piece
// color: Color
// from : Square
// to   : Square
network.EfficientlyUpdateAccumulator(piece, color, from, to);
  • Evaluating the network:
// Evaluate when it is white's turn:
int32_t score = network.Evaluate(0);
// Evaluate when it is black's turn:
int32_t score = network.Evaluate(1);
  • Saving to binary file:
// Create the output stream:
MantaRay::BinaryFileStream stream("network.nnue");

// Save the network to the stream:
network.WriteTo(stream);

Benchmarks

Only certain methods have been benchmarked. Other methods are not benchmarked as they are not used in the evaluation loop, thus, not performance critical. They should be used only when the network is being reset (very less frequently).

  • PerspectiveNNUE (Intel i9-11900H, Clang LLVM 16, -O3): Benchmark-01.png

About

Lightspeed C++ Neural Network (UE) Inference Library for Chess

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages