Skip to content

Tony-Y/pytorch_warmup

Repository files navigation

A PyTorch Extension for Learning Rate Warmup

This library contains PyTorch implementations of the warmup schedules described in On the adequacy of untuned warmup for adaptive optimization.

Warmup schedule

Python package PyPI version shields.io PyPI license Python versions

Installation

Make sure you have Python 3.9+ and PyTorch 1.9+ or 2.x. Then, run the following command in the project directory:

python -m pip install .

or install the latest version from the Python Package Index:

pip install -U pytorch_warmup

Examples

  • CIFAR10 - A sample script to train a ResNet model on the CIFAR10 dataset using an optimization algorithm with a warmup schedule. Its README presents ResNet20 results obtained using each of AdamW, NAdamW, AMSGradW, and AdaMax together with each of various warmup schedules. In addition, there is a ResNet performance comparison (up to ResNet110) obtained using the SGD algorithm with a linear warmup schedule.
  • EMNIST - A sample script to train a CNN model on the EMNIST dataset using the AdamW algorithm with a warmup schedule. Its README presents a result obtained using the AdamW algorithm with each of the untuned linear and exponential warmup, and the RAdam warmup.
  • Plots - A script to plot effective warmup periods as a function of β₂, and warmup schedules over time.

Usage

The documentation provides more detailed information on this library, unseen below.

Sample Codes

The scheduled learning rate is dampened by the multiplication of the warmup factor:

Learning rate

Approach 1

Open In Colab

When the learning rate schedule uses the global iteration number, the untuned linear warmup can be used together with Adam or its variant (AdamW, NAdam, etc.) as follows:

import torch
import pytorch_warmup as warmup

optimizer = torch.optim.AdamW(params, lr=0.001, betas=(0.9, 0.999), weight_decay=0.01)
    # This sample code uses the AdamW optimizer.
num_steps = len(dataloader) * num_epochs
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_steps)
    # The LR schedule initialization resets the initial LR of the optimizer.
warmup_scheduler = warmup.UntunedLinearWarmup(optimizer)
    # The warmup schedule initialization dampens the initial LR of the optimizer.
for epoch in range(1,num_epochs+1):
    for batch in dataloader:
        optimizer.zero_grad()
        loss = ...
        loss.backward()
        optimizer.step()
        with warmup_scheduler.dampening():
            lr_scheduler.step()

Warning

Note that the warmup schedule must not be initialized before the initialization of the learning rate schedule.

If you want to use the learning rate schedule chaining, which is supported for PyTorch 1.4 or above, you may simply write a code of learning rate schedulers as a suite of the with statement:

lr_scheduler1 = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
lr_scheduler2 = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1)
warmup_scheduler = warmup.UntunedLinearWarmup(optimizer)
for epoch in range(1,num_epochs+1):
    for batch in dataloader:
        ...
        optimizer.step()
        with warmup_scheduler.dampening():
            lr_scheduler1.step()
            lr_scheduler2.step()

If you want to start the learning rate schedule after the end of the linear warmup, delay it by the warmup period:

warmup_period = 2000
num_steps = len(dataloader) * num_epochs - warmup_period
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_steps)
warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period)
for epoch in range(1,num_epochs+1):
    for batch in dataloader:
        ...
        optimizer.step()
        with warmup_scheduler.dampening():
            if warmup_scheduler.last_step + 1 >= warmup_period:
                lr_scheduler.step()

Approach 2

Open In Colab

When the learning rate schedule uses the epoch number, the warmup schedule can be used as follows:

lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[num_epochs//3], gamma=0.1)
warmup_scheduler = warmup.UntunedLinearWarmup(optimizer)
for epoch in range(1,num_epochs+1):
    for i, batch in enumerate(dataloader):
        optimizer.zero_grad()
        loss = ...
        loss.backward()
        optimizer.step()
        if i < len(dataloader)-1:
            with warmup_scheduler.dampening():
                pass
    with warmup_scheduler.dampening():
        lr_scheduler.step()

This code can be rewritten more compactly:

for epoch in range(1,num_epochs+1):
    for i, batch in enumerate(dataloader):
        optimizer.zero_grad()
        loss = ...
        loss.backward()
        optimizer.step()
        with warmup_scheduler.dampening():
            if i + 1 == len(dataloader):
                lr_scheduler.step()

Approach 3

When you use CosineAnnealingWarmRestarts, the warmup schedule can be used as follows:

lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=2)
warmup_period = 2000
warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period)
iters = len(dataloader)
warmup_epochs = ... # for example, (warmup_period + iters - 1) // iters
for epoch in range(epochs+warmup_epochs):
    for i, batch in enumerate(dataloader):
        optimizer.zero_grad()
        loss = ...
        loss.backward()
        optimizer.step()
        with warmup_scheduler.dampening():
            if epoch >= warmup_epochs:
                lr_scheduler.step(epoch-warmup_epochs + i / iters)

Warmup Schedules

Manual Warmup

In LinearWarmup and ExponentialWarmup, the warmup factor w(t) depends on the warmup period that must manually be specified.

Linear

w(t) = min(1, t / warmup_period)

warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period=2000)

For details please refer to LinearWarmup in the documentation.

Exponential

w(t) = 1 - exp(-t / warmup_period)

warmup_scheduler = warmup.ExponentialWarmup(optimizer, warmup_period=1000)

For details please refer to ExponentialWarmup in the documentation.

Untuned Warmup

In UntunedLinearWarmup and UntunedExponentialWarmup, the warmup period is determined by a function of Adam's beta2 parameter.

Linear

warmup_period = 2 / (1 - beta2)

warmup_scheduler = warmup.UntunedLinearWarmup(optimizer)

For details please refer to UntunedLinearWarmup in the documentation.

Exponential

warmup_period = 1 / (1 - beta2)

warmup_scheduler = warmup.UntunedExponentialWarmup(optimizer)

For details please refer to UntunedExponentialWarmup in the documentation.

RAdam Warmup

In RAdamWarmup, the warmup factor w(t) is a complicated function depending on Adam's beta2 parameter.

warmup_scheduler = warmup.RAdamWarmup(optimizer)

For details please refer to RAdamWarmup in the documentation, or "On the Variance of the Adaptive Learning Rate and Beyond."

Apex's Adam

The Apex library provides an Adam optimizer tuned for CUDA devices, FusedAdam. The FusedAdam optimizer can be used together with any one of the warmup schedules above. For example:

Open In Colab

optimizer = apex.optimizers.FusedAdam(params, lr=0.001, betas=(0.9, 0.999), weight_decay=0.01)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_steps)
warmup_scheduler = warmup.UntunedLinearWarmup(optimizer)

Compiled Optimizers

Benchmarking results show that the complied Adam outperforms the Apex's Adam.

Warning

PyTorch 2.3 or later is required for using the compiled optimizer with a warmup scheduler and/or LR schedulers. PyTorch-Warmup 0.2 or earlier is incompatible with the complied optimizer.

You can compile the Adam optimizer as follows:

model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=torch.tensor(0.001).to(device))
opt_step = torch.compile(optimizer.step, mode="reduce-overhead")

Important

Wrap the learning rate in a Tensor, or torch.compile will recompile as the value of the learning rate changes.

Then, the compiled version opt_step have to be invoked instead of optimizer.step:

for epoch in range(1,num_epochs+1):
    for batch in dataloader:
        optimizer.zero_grad()
        loss = ...
        loss.backward()
        opt_step()
        with warmup_scheduler.dampening():
            lr_scheduler.step()

You can also compile other built-in optimizers in the way shown above.

Note

When using the compiled SGD with momentum, its momentum buffer is needed to be initialized manually. You can find sample code in the CIFAR10 exmaple.

In practice, you may compile it together with other PyTorch code as follows:

@torch.compile(mode="reduce-overhead")
def train_iter_fn(batch):
    optimizer.zero_grad()
    loss = ...
    loss.backward()
    optimizer.step()

for epoch in range(1,num_epochs+1):
    for batch in dataloader:
        train_iter_fn(batch)
        with warmup_scheduler.dampening():
            lr_scheduler.step()

torch.compile skips lr_scheduler.step even if it were invoked within train_iter_fn. Likewise, you should not compile warmup_scheduler.dampening. You may also use torch.compiler.disable to have torch.compile skip a function updating the learning rate as follows:

@torch.compiler.disable
def update_lr_fn():
    with warmup_scheduler.dampening():
        lr_scheduler.step()

@torch.compile(mode="reduce-overhead")
def train_iter_fn(batch):
    optimizer.zero_grad()
    loss = ...
    loss.backward()
    optimizer.step()
    update_lr_fn()

for epoch in range(1,num_epochs+1):
    for batch in dataloader:
        train_iter_fn(batch)

License

MIT License

© 2019-2025 Takenori Yamamoto