Skip to content
/ OpenOCR Public

OpenOCR: A general OCR system with accuracy and efficiency. Supporting 24 Scene Text Recognition methods trained from scratch on large-scale real datasets, and will continue to add the latest methods.

License

Notifications You must be signed in to change notification settings

Topdu/OpenOCR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

OpenOCR

We aim to establish a unified benchmark for training and evaluating models in scene text detection and recognition. Building on this benchmark, we introduce a general OCR system with accuracy and efficiency, OpenOCR. This repository also serves as the official codebase of the OCR team from the FVL Laboratory, Fudan University.

We sincerely welcome the researcher to recommend OCR or relevant algorithms and point out any potential factual errors or bugs. Upon receiving the suggestions, we will promptly evaluate and critically reproduce them. We look forward to collaborating with you to advance the development of OpenOCR and continuously contribute to the OCR community!

Features

  • πŸ”₯OpenOCR: A general OCR system with accuracy and efficiency
  • πŸ”₯SVTRv2: CTC Beats Encoder-Decoder Models in Scene Text Recognition
    • [Paper] [Doc] [Model] [Datasets] [Config, Training and Inference] [Benchmark]
    • Introduction
      • A unified training and evaluation benchmark (on top of Union14M) for Scene Text Recognition
      • Supports 24 Scene Text Recognition methods trained from scratch on the large-scale real dataset Union14M-L-Filter, and will continue to add the latest methods.
      • Improves accuracy by 20-30% compared to models trained based on synthetic datasets.
      • Towards Arbitrary-Shaped Text Recognition and Language modeling with a Single Visual Model.
      • Surpasses Attention-based Encoder-Decoder Methods across challenging scenarios in terms of accuracy and speed
    • Get Started with training a SOTA Scene Text Recognition model from scratch.

Ours STR algorithms

  • SMTR&FocalSVTR (Yongkun Du, Zhineng Chen*, Caiyan Jia, Xieping Gao, Yu-Gang Jiang. Out of Length Text Recognition with Sub-String Matching, AAAI 2025. Doc, Paper)
  • DPTR (Shuai Zhao, Yongkun Du, Zhineng Chen*, Yu-Gang Jiang. Decoder Pre-Training with only Text for Scene Text Recognition, ACM MM 2024. Paper)
  • IGTR (Yongkun Du, Zhineng Chen*, Yuchen Su, Caiyan Jia, Yu-Gang Jiang. Instruction-Guided Scene Text Recognition, TPAMI (accepted). Doc, Paper)
  • SVTRv2 (Yongkun Du, Zhineng Chen*, Hongtao Xie, Caiyan Jia, Yu-Gang Jiang. SVTRv2: CTC Beats Encoder-Decoder Models in Scene Text Recognition, 2024. Doc, Paper)
  • CDistNet (Tianlun Zheng, Zhineng Chen*, Shancheng Fang, Hongtao Xie, Yu-Gang Jiang. CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition, IJCV 2024. Paper)
  • MRN (Tianlun Zheng, Zhineng Chen*, Bingchen Huang, Wei Zhang, Yu-Gang Jiang. MRN: Multiplexed routing network for incremental multilingual text recognition, ICCV 2023. Paper, Code)
  • TPS++ (Tianlun Zheng, Zhineng Chen*, Jinfeng Bai, Hongtao Xie, Yu-Gang Jiang. TPS++: Attention-Enhanced Thin-Plate Spline for Scene Text Recognition, IJCAI 2023. Paper, Code)
  • CPPD (Yongkun Du, Zhineng Chen*, Caiyan Jia, Xiaoting Yin, Chenxia Li, Yuning Du, Yu-Gang Jiang. Context Perception Parallel Decoder for Scene Text Recognition, Under TPAMI minor revision 2023. PaddleOCR Doc, Paper)
  • SVTR (Yongkun Du, Zhineng Chen*, Caiyan Jia, Xiaoting Yin, Tianlun Zheng, Chenxia Li, Yuning Du, Yu-Gang Jiang. SVTR: Scene Text Recognition with a Single Visual Model, IJCAI 2022 (Long). PaddleOCR Doc, Paper)
  • NRTR (Fenfen Sheng, Zhineng Chen*, Bo Xu. NRTR: A No-Recurrence Sequence-to-Sequence Model For Scene Text Recognition, ICDAR 2019. Paper)

Recent Updates

Quick Start

Dependencies:

  • PyTorch version >= 1.13.0
  • Python version >= 3.7
conda create -n openocr python==3.8
conda activate openocr
# install gpu version torch
conda install pytorch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 pytorch-cuda=11.8 -c pytorch -c nvidia
# or cpu version
conda install pytorch torchvision torchaudio cpuonly -c pytorch

After installing dependencies, the following two installation methods are available. Either one can be chosen.

1. Python Modules

pip install openocr-python

Usage:

from openocr import OpenOCR

engine = OpenOCR()

img_path = '/path/img_path or /path/img_file'
result, elapse = engine(img_path)

# Server mode
# engine = OpenOCR(mode='server')

2. Clone this repository:

git clone https://github.com/Topdu/OpenOCR.git
cd OpenOCR
pip install -r requirements.txt
wget https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_det_repvit_ch.pth
wget https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_repsvtr_ch.pth
# Rec Server model
# wget https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_svtrv2_ch.pth

Usage:

# OpenOCR system: Det + Rec model
python tools/infer_e2e.py --img_path=/path/img_fold or /path/img_file
# Det model
python tools/infer_det.py --c ./configs/det/dbnet/repvit_db.yml --o Global.infer_img=/path/img_fold or /path/img_file
# Rec model
python tools/infer_rec.py --c ./configs/rec/svtrv2/repsvtr_ch.yml --o Global.infer_img=/path/img_fold or /path/img_file

Local Demo

pip install gradio==4.20.0
wget https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/OCR_e2e_img.tar
tar xf OCR_e2e_img.tar
# start demo
python demo_gradio.py

Reproduction schedule:

Scene Text Recognition

Method Venue Training Evaluation Contributor
CRNN TPAMI 2016 βœ… βœ…
ASTER TPAMI 2019 βœ… βœ… pretto0
NRTR ICDAR 2019 βœ… βœ…
SAR AAAI 2019 βœ… βœ… pretto0
MORAN PR 2019 βœ… βœ…
DAN AAAI 2020 βœ… βœ…
RobustScanner ECCV 2020 βœ… βœ… pretto0
AutoSTR ECCV 2020 βœ… βœ…
SRN CVPR 2020 βœ… βœ… pretto0
SEED CVPR 2020 βœ… βœ…
ABINet CVPR 2021 βœ… βœ… YesianRohn
VisionLAN ICCV 2021 βœ… βœ… YesianRohn
PIMNet ACM MM 2021 TODO
SVTR IJCAI 2022 βœ… βœ…
PARSeq ECCV 2022 βœ… βœ…
MATRN ECCV 2022 βœ… βœ…
MGP-STR ECCV 2022 βœ… βœ…
CPPD 2023 βœ… βœ…
LPV IJCAI 2023 βœ… βœ…
MAERec(Union14M) ICCV 2023 βœ… βœ…
LISTER ICCV 2023 βœ… βœ…
CDistNet IJCV 2024 βœ… βœ… YesianRohn
BUSNet AAAI 2024 βœ… βœ…
DCTC AAAI 2024 TODO
CAM PR 2024 βœ… βœ…
OTE CVPR 2024 βœ… βœ…
CFF IJCAI 2024 TODO
DPTR ACM MM 2024 fd-zs
VIPTR ACM CIKM 2024 TODO
IGTR TPAMI βœ… βœ…
SMTR AAAI 2025 βœ… βœ…
FocalSVTR-CTC 2024 βœ… βœ…
SVTRv2 2024 βœ… βœ…
ResNet+Trans-CTC βœ… βœ…
ViT-CTC βœ… βœ…

Contributors


Yiming Lei (pretto0), Xingsong Ye (YesianRohn), and Shuai Zhao (fd-zs) from the FVL Laboratory, Fudan University, with guidance from Dr. Zhineng Chen (Homepage), completed the majority work of the algorithm reproduction. Grateful for their outstanding contributions.

Scene Text Detection (STD)

TODO

Text Spotting

TODO


Citation

If you find our method useful for your reserach, please cite:

@article{Du2024SVTRv2,
      title={SVTRv2: CTC Beats Encoder-Decoder Models in Scene Text Recognition},
      author={Yongkun Du and Zhineng Chen and Hongtao Xie and Caiyan Jia and Yu-Gang Jiang},
      journal={CoRR},
      volume={abs/2411.15858},
      eprinttype={arXiv},
      year={2024},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2411.15858}
}

Acknowledgement

This codebase is built based on the PaddleOCR, PytorchOCR, and MMOCR. Thanks for their awesome work!

About

OpenOCR: A general OCR system with accuracy and efficiency. Supporting 24 Scene Text Recognition methods trained from scratch on large-scale real datasets, and will continue to add the latest methods.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages