forked from ModelTC/lightllm
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Bug Fix] Fix bug for triton 2.1.0 llama decode kernel and add llama2…
… decode attention kernel. (ModelTC#113)
- Loading branch information
1 parent
718e6d6
commit 2d3cd33
Showing
4 changed files
with
117 additions
and
17 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
84 changes: 84 additions & 0 deletions
84
lightllm/models/llama2/triton_kernel/token_attention_softmax_and_reducev.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
import torch | ||
|
||
import triton | ||
import triton.language as tl | ||
import torch.nn.functional as F | ||
|
||
|
||
@triton.jit | ||
def _fwd_kernel( | ||
Logics, V, Out, | ||
B_Loc, B_Start_Loc, B_Seqlen, max_input_len, | ||
stride_logic_h, stride_logic_bs, | ||
stride_vbs, stride_vh, stride_vd, | ||
stride_obs, stride_oh, stride_od, | ||
stride_b_loc_b, stride_b_loc_s, | ||
other_kv_index, # 避免读取到nan的数据 | ||
kv_group_num, | ||
BLOCK_DMODEL: tl.constexpr, | ||
BLOCK_N: tl.constexpr, | ||
): | ||
cur_batch = tl.program_id(0) | ||
cur_head = tl.program_id(1) | ||
|
||
cur_kv_head = cur_head // kv_group_num | ||
|
||
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch) | ||
cur_batch_start_loc = tl.load(B_Start_Loc + cur_batch) | ||
|
||
offs_n = tl.arange(0, BLOCK_N) | ||
offs_d = tl.arange(0, BLOCK_DMODEL) | ||
|
||
off_v = cur_kv_head * stride_vh + offs_d[None, :] * stride_vd | ||
off_b_loc = cur_batch * stride_b_loc_b + (max_input_len - cur_batch_seq_len) * stride_b_loc_s | ||
|
||
v_ptrs = V + off_v | ||
|
||
e_max = float("-inf") | ||
e_sum = 0.0 | ||
acc = tl.zeros([BLOCK_DMODEL], dtype=tl.float32) | ||
|
||
for start_n in range(0, cur_batch_seq_len, BLOCK_N): | ||
start_n = tl.multiple_of(start_n, BLOCK_N) | ||
v_index = tl.load(B_Loc + off_b_loc + (start_n + offs_n) * stride_b_loc_s, mask=(start_n + offs_n) < cur_batch_seq_len, other=other_kv_index) | ||
|
||
qk = tl.load(Logics + cur_head * stride_logic_h + (cur_batch_start_loc + start_n + offs_n) * stride_logic_bs, | ||
mask=start_n + offs_n < cur_batch_seq_len, other=float("-inf")) | ||
|
||
n_e_max = tl.maximum(tl.max(qk, 0), e_max) | ||
old_scale = tl.exp(e_max - n_e_max) | ||
p = tl.exp(qk - n_e_max) | ||
e_sum = e_sum * old_scale + tl.sum(p, 0) | ||
v = tl.load(v_ptrs + v_index[:, None] * stride_vbs) | ||
acc = acc * old_scale + tl.sum(p[:, None] * v, 0) | ||
e_max = n_e_max | ||
|
||
acc = acc / e_sum | ||
off_o = cur_batch * stride_obs + cur_head * stride_oh + offs_d * stride_od | ||
out_ptrs = Out + off_o | ||
tl.store(out_ptrs, acc) | ||
return | ||
|
||
|
||
@torch.no_grad() | ||
def token_softmax_reducev_fwd(logics, v, o, b_loc, b_start_loc, b_seq_len, max_input_len, other_kv_index): | ||
BLOCK = 64 | ||
batch, head = b_seq_len.shape[0], logics.shape[0] | ||
grid = (batch, head) | ||
kv_group_num = logics.shape[0] // v.shape[1] | ||
|
||
num_warps = 1 | ||
_fwd_kernel[grid]( | ||
logics, v, o, b_loc, b_start_loc, b_seq_len, max_input_len, | ||
logics.stride(0), logics.stride(1), | ||
v.stride(0), v.stride(1), v.stride(2), | ||
o.stride(0), o.stride(1), o.stride(2), | ||
b_loc.stride(0), b_loc.stride(1), | ||
other_kv_index, | ||
kv_group_num, | ||
BLOCK_DMODEL=v.shape[-1], | ||
BLOCK_N=BLOCK, | ||
num_warps=num_warps, | ||
num_stages=3 | ||
) | ||
return |