Skip to content

TrellixVulnTeam/starwhale_SK7O

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

PyPI - Python Version Codecov Codecov Artifact Hub Starwhale E2E Test

What is Starwhale

Starwhale is an MLOps platform. It provides Instance, Project, Runtime, Model, and Dataset.

  • Instance: Each installation of Starwhale is called an instance.

    • πŸ‘» Standalone Instance: The simplest form that requires only the Starwhale Client(swcli). swcli is written by pure python3.
    • 🎍 On-Premises Instance: Cloud form, we call it private cloud instance. Kubernetes and BareMetal both meet the basic environmental requirements.
    • ☁️ Cloud Hosted Instance: Cloud form, we call it public cloud instance. Starwhale team maintains the web service.

    Starwhale tries to keep concepts consistent across different types of instances. In this way, people can easily exchange data and migrate between them.

  • Project: The basic unit for organizing different resources.

  • ML Basic Elements: The Machine Learning/Deep Learning running environments or artifacts. Starwhale empowers the ML/DL essential elements with packaging, versioning, reproducibility, and shareability.

    • 🐌 Runtime: Software dependencies description to "run" a model, which includes python libraries, native libraries, native binaries, etc.
    • πŸ‡ Model: The standard model format used in model delivery.
    • 🐫 Dataset: A unified description of how the data and labels are stored and organized. Starwhale datasets can be loaded efficiently.
  • Running Fundamentals: Starwhale uses Job, Step, and Task to execute ML/DL actions like model training, evaluation, and serving. Starwhale's Controller-Agents structure scales out easily.

    • πŸ₯• Job: A set of programs to do specific work. Each job consists of one or more steps.
    • 🌡 Step: Represents distinct stages of the work. Each step consists of one or more tasks.
    • πŸ₯‘ Task: Operation entity. Tasks are in some specific steps.
  • Scenarios: Starwhale provides the best practice and out-of-the-box for different ML/DL scenarios.

    • 🚝 Model Training(TBD): Use Starwhale Python SDK to record experiment meta, metric, log, and artifact.
    • πŸ›₯️ Model Evaluation: PipelineHandler and some report decorators can give you complete, helpful, and user-friendly evaluation reports with only a few lines of codes.
    • πŸ›« Model Serving(TBD): Starwhale Model can be deployed as a web service or stream service in production with deployment capability, observability, and scalability. Data scientists do not need to write ML/DL irrelevant codes.

MNIST Quick Tour for the standalone instance

Use Notebook

Use your own python env

Core Job Workflow

  • 🍰 STEP1: Installing Starwhale

    python3 -m pip install --pre starwhale
  • 🍡 STEP2: Downloading the MNIST example

    git clone https://github.com/star-whale/starwhale.git
  • β˜• STEP3: Building a runtime

    cd example/runtime/pytorch
    swcli runtime build .
    swcli runtime list
    swcli runtime info pytorch/version/latest
  • 🍞 STEP4: Building a model

    • Enter example/mnist directory:
    cd ../../mnist
    • Write some code with Starwhale Python SDK. Complete code is here.
    import typing as t
    import torch
    from starwhale import Image, PipelineHandler, PPLResultIterator, multi_classification
    
    class MNISTInference(PipelineHandler):
         def __init__(self) -> None:
             super().__init__()
             self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
             self.model = self._load_model(self.device)
    
         def ppl(self, img: Image, **kw: t.Any) -> t.Tuple[t.List[int], t.List[float]]:
             data_tensor = self._pre(img)
             output = self.model(data_tensor)
             return self._post(output)
    
         @multi_classification(
             confusion_matrix_normalize="all",
             show_hamming_loss=True,
             show_cohen_kappa_score=True,
             show_roc_auc=True,
             all_labels=[i for i in range(0, 10)],
         )
         def cmp(
             self, ppl_result: PPLResultIterator
         ) -> t.Tuple[t.List[int], t.List[int], t.List[t.List[float]]]:
             result, label, pr = [], [], []
             for _data in ppl_result:
                 label.append(_data["annotations"]["label"])
                 result.extend(_data["result"][0])
                 pr.extend(_data["result"][1])
             return label, result, pr
    
        def _pre(self, input:bytes):
            """write some mnist preprocessing code"""
    
        def _post(self, input:bytes):
            """write some mnist post-processing code"""
    
        def _load_model():
            """load your pre trained model"""
    • Define model.yaml.
    name: mnist
    model:
      - models/mnist_cnn.pt
    config:
      - config/hyperparam.json
    run:
      handler: mnist.evaluator:MNISTInference
    • Run one command to build the model.
     swcli model build .
     swcli model info mnist/version/latest
  • 🍺 STEP5: Building a dataset

    • Download MNIST RAW data files.
     mkdir -p data && cd data
     wget http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
     wget http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
     gzip -d *.gz
     cd ..
     ls -lah data/*
    • Write some code with Starwhale Python SDK. Full code is here.
     import struct
     import typing as t
     from pathlib import Path
     from starwhale import BuildExecutor
    
     class DatasetProcessExecutor(SWDSBinBuildExecutor):
         def iter_item(self) -> t.Generator[t.Tuple[t.Any, t.Any], None, None]:
             root_dir = Path(__file__).parent.parent / "data"
    
             with (root_dir / "t10k-images-idx3-ubyte").open("rb") as data_file, (
                 root_dir / "t10k-labels-idx1-ubyte"
             ).open("rb") as label_file:
                 _, data_number, height, width = struct.unpack(">IIII", data_file.read(16))
                 _, label_number = struct.unpack(">II", label_file.read(8))
                 print(
                     f">data({data_file.name}) split data:{data_number}, label:{label_number} group"
                 )
                 image_size = height * width
    
                 for i in range(0, min(data_number, label_number)):
                     _data = data_file.read(image_size)
                     _label = struct.unpack(">B", label_file.read(1))[0]
                     yield GrayscaleImage(
                         _data,
                         display_name=f"{i}",
                         shape=(height, width, 1),
                     ), {"label": _label}
    • Define dataset.yaml.
     name: mnist
     handler: mnist.dataset:DatasetProcessExecutor
     attr:
       alignment_size: 1k
       volume_size: 4M
       data_mime_type: "x/grayscale"
    • Run one command to build the dataset.
     swcli dataset build .
     swcli dataset info mnist/version/latest
  • πŸ– STEP6: Running an evaluation job

     swcli -vvv eval run --model mnist/version/latest --dataset mnist/version/latest --runtime pytorch/version/latest
     swcli eval list
     swcli eval info ${version}

πŸ‘ Now, you have completed the fundamental steps for Starwhale standalone.

Let's go ahead and finish the tutorial on the on-premises instance.

MNIST Quick Tour for on-premises instance

Create Job Workflow

  • 🍰 STEP1: Install minikube and helm

  • 🍡 STEP2: Start minikube

    minikube start

    For users in the mainland of China, please add these startup parameters:--image-mirror-country=cn --image-repository=registry.cn-hangzhou.aliyuncs.com/google_containers. If there is no kubectl bin in your machine, you may use minikube kubectl or alias kubectl="minikube kubectl --" alias command.

  • 🍡 STEP3: Installing Starwhale

    helm repo add starwhale https://star-whale.github.io/charts
    helm repo update
    helm install --devel my-starwhale starwhale/starwhale -n starwhale --create-namespace --set minikube.enabled=true

    After the installation is successful, the following prompt message appears:

    NAME: my-starwhale
    LAST DEPLOYED: Thu Jun 23 14:48:02 2022
    NAMESPACE: starwhale
    STATUS: deployed
    REVISION: 1
    NOTES:
    ******************************************
    Chart Name: starwhale
    Chart Version: 0.3.0
    App Version: 0.3.0
    ...
    
    Port Forward Visit:
    - starwhale controller:
        - run: kubectl port-forward --namespace starwhale svc/my-starwhale-controller 8082:8082
        - visit: http://localhost:8082
    - minio admin:
        - run: kubectl port-forward --namespace starwhale svc/my-starwhale-minio 9001:9001
        - visit: http://localhost:9001
    - mysql:
        - run: kubectl port-forward --namespace starwhale svc/my-starwhale-mysql 3306:3306
        - visit: mysql -h 127.0.0.1 -P 3306 -ustarwhale -pstarwhale
    
    ******************************************
    Login Info:
    - starwhale: u:starwhale, p:abcd1234
    - minio admin: u:minioadmin, p:minioadmin
    
    *_* Enjoy using Starwhale. *_*

    Then keep checking the minikube service status until all pods are running.

    kubectl get pods -n starwhale
    NAME READY STATUS RESTARTS AGE
    my-starwhale-controller-7d864558bc-vxvb8 1/1 Running 0 1m
    my-starwhale-minio-7d45db75f6-7wq9b 1/1 Running 0 2m
    my-starwhale-mysql-0 1/1 Running 0 2m

    Make the Starwhale controller accessible locally with the following command:

    kubectl port-forward --namespace starwhale svc/my-starwhale-controller 8082:8082
  • β˜• STEP4: Upload the artifacts to the cloud instance

    pre-prepared artifacts Before starting this tutorial, the following three artifacts should already exist on your machine:

    • a starwhale model named mnist
    • a starwhale dataset named mnist
    • a starwhale runtime named pytorch

    The above three artifacts are what we built on our machine using starwhale.

    1. Use swcli to operate the remote server First, log in to the server:

      swcli instance login --username starwhale --password abcd1234 --alias dev http://localhost:8082
    2. Start copying the model, dataset, and runtime that we constructed earlier:

      swcli model copy mnist/version/latest dev/project/starwhale
      swcli dataset copy mnist/version/latest dev/project/starwhale
      swcli runtime copy pytorch/version/latest dev/project/starwhale
  • 🍞 STEP5: Use the web UI to run an evaluation

    1. Log in Starwhale instance: let's use the username(starwhale) and password(abcd1234) to open the server web UI(http://localhost:8082/).

    2. Then, we will see the project named 'project_for_mnist' that we created earlier with swcli. Click the project name, you will see the model, runtime, and dataset uploaded in the previous step.

      Show the uploaded artifacts screenshots

      console-artifacts.gif

    3. Create and view an evaluation job

      Show create job screenshot

      console-create-job.gif

Congratulations! You have completed the evaluation process for a model.

Documentation, Community, and Support

Contributing

πŸŒΌπŸ‘PRs are always welcomed πŸ‘πŸΊ. See Contribution to Starwhale for more details.

License

Starwhale is licensed under the Apache License 2.0.

About

an MLOps platform

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Java 46.4%
  • TypeScript 28.4%
  • Python 23.1%
  • Shell 0.7%
  • JavaScript 0.4%
  • SCSS 0.3%
  • Other 0.7%