The repository for the UAI 2021 publication 'Multi-output Gaussian Processes for Uncertainty-aware Recommender Systems'.
# Define the hyper parameters
hyper_params = {
'I':I, 'J':J, 'K':K, # the number of entities in each domain
'emb_sizes': [8, 8], # the embedding sizes
'M': original=128, # the number of inducing pairs
'emb_reg': 1e-3, # l2 norm on the embeddings
'batch_size': 2**16, # the size of training batches
'obs_mean': Y_tr.mean(), # the mean of target
'lr': 1e-2 # the learning rate
}
gp_md = GPD(**hyper_params)
gp_md.save_path = './ml-1m_lrs/'+str(lr)+'_cv'+str(cv_id)+'/'
gp_md.build()
gp_md.train(X_tr, Y_tr, X_te, Y_te, n_iter=501)
gp_md.save()
Note: github doesn't seem to be rendering the notebooks correctly. Consider downloading them for reviewing.