-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
264 lines (238 loc) · 11.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
import json
import yaml
import torch
import importlib
import faulthandler
from collections import OrderedDict
faulthandler.enable()
import utils
from seq_scripts import seq_train, seq_eval, seq_final, gen_final_res
class Processor():
def __init__(self, arg):
self.arg = arg
if self.arg.random_fix:
self.rng = utils.RandomState(seed=self.arg.random_seed)
self.device = utils.GpuDataParallel()
self.device.set_device(self.arg.device)
self.save_arg()
self.recoder = utils.Recorder(
self.arg.work_dir, self.arg.print_log, self.arg.log_interval
)
self.dataset = {}
self.data_loader = {}
self.gloss_dict = json.load(
open(f'./data/gloss_dict.json', 'r')
)
self.model, self.optimizer = self.loading()
def start(self):
if self.arg.phase == 'train':
self.recoder.print_log('Parameters:\n{}\n'.format(str(vars(self.arg))))
best_performance = 0.0
for epoch in range(self.arg.optimizer_args['start_epoch'], self.arg.num_epoch):
save_model = epoch % self.arg.save_interval == 0
eval_model = epoch % self.arg.eval_interval == 0
# train end2end model
seq_train(self.data_loader['train'], self.model, self.optimizer,
self.device, epoch, self.recoder)
if eval_model:
performance = seq_eval(
self.arg, self.data_loader["val"], self.model, self.device,
"val", epoch, self.arg.work_dir, self.recoder, self.arg.evaluate_tool
)
self.recoder.print_log(
f"Epoch {epoch}, Average Topk-{1}\t: {performance:.2f}%"
)
if save_model:
if self.arg.num_epoch - epoch <= self.arg.keep_last:
model_path = f"{self.arg.work_dir}/model_{epoch}.pt"
self.save_model(epoch, model_path)
if performance > best_performance:
best_performance = performance
model_path = f"{self.arg.work_dir}/model_best.pt"
self.save_model(epoch, model_path)
elif self.arg.phase == 'test':
self.recoder.print_log('Model: {}.'.format(self.arg.model))
self.recoder.print_log('Weights: {}.'.format(self.arg.load_weights))
seq_eval(
self.arg, self.data_loader["val"], self.model, self.device,
"val", 6667, self.arg.work_dir, self.recoder, self.arg.evaluate_tool)
# eval all test scene
performance = 0
for scene in ['ITW', 'STU', 'SYN', 'TED']:
for view in ['kl', 'kr']:
indictor = f'test_{scene}_{view}'
performance += seq_eval(
self.arg, self.data_loader[indictor], self.model, self.device,
indictor, 6667, self.arg.work_dir, self.recoder, self.arg.evaluate_tool
)
self.recoder.print_log(
f"Epoch 6667, Average Topk-{1}\t: {performance/8:.2f}%"
)
self.recoder.print_log('Evaluation Done.\n')
elif self.arg.phase == "final":
for scene in ['ITW', 'STU', 'SYN', 'TED']:
for view in ['kl', 'kr']:
indictor = f'test_{scene}_{view}'
seq_final(
self.arg,view, self.data_loader[indictor], self.model, self.device,
indictor, 6667, self.arg.work_dir, self.recoder, self.arg.evaluate_tool)
gen_final_res(self.gloss_dict)
self.recoder.print_log('Evaluation Done.\n')
def save_arg(self):
arg_dict = vars(self.arg)
if not os.path.exists(self.arg.work_dir):
os.makedirs(self.arg.work_dir)
with open('{}/config.yaml'.format(self.arg.work_dir), 'w') as f:
yaml.dump(arg_dict, f)
def save_model(self, epoch, save_path):
torch.save({
'epoch': epoch,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'scheduler_state_dict': self.optimizer.scheduler.state_dict(),
'rng_state': self.rng.save_rng_state(),
}, save_path)
def loading(self):
self.load_data()
self.recoder.print_info("Loading model")
model_class = import_class(self.arg.model)
model = model_class(
**self.arg.model_args,
class_num=len(self.gloss_dict['gloss2id']),
)
optimizer = utils.Optimizer(model, self.arg.optimizer_args)
if self.arg.load_weights:
self.load_model_weights(model, self.arg.load_weights)
elif self.arg.load_checkpoints:
self.load_checkpoint_weights(model, optimizer)
model = self.model_to_device(model)
self.recoder.print_info("Loading model finished.")
return model, optimizer
def model_to_device(self, model):
model = model.to(self.device.output_device)
return model
def load_model_weights(self, model, weight_path):
new_state_dict = model.state_dict()
state_dict = torch.load(weight_path, map_location=torch.device('cpu'))
state_dict = state_dict['model_state_dict']
# 1. used to record all the weights loaded successfully
loaded_keys = set()
# 2. compare the state_dict and the new_state_dict to find matched weights
for key in state_dict.keys():
if key in new_state_dict:
new_state_dict[key] = state_dict[key]
loaded_keys.add(key)
if self.arg.phase == 'train':
new_state_dict['heads.classify.classifier_s.weight']=state_dict['heads.classify.classifier.weight']
elif '2d_skeleton' in self.arg.feeder_args['train']['data_type'] and 'r_features' in self.arg.feeder_args['train']['data_type'] and not 'd_features' in self.arg.feeder_args['train']['data_type']: # RGB Fusion test
new_state_dict['heads.classify.classifier_s.weight'] = state_dict['heads.classify.classifier2.weight']
new_state_dict['heads.classify.classifier_r.weight'] = state_dict['heads.classify.classifier3.weight']
loaded_keys.add('heads.classify.classifier2.weight')
loaded_keys.add('heads.classify.classifier3.weight')
# 3. check if there are unloaded weights
not_loaded_keys = set(state_dict.keys()) - loaded_keys
if not_loaded_keys:
print("The following weights were NOT loaded:")
for key in not_loaded_keys:
print(f" - {key}")
else:
print("All weights loaded successfully.")
model.load_state_dict(new_state_dict, strict=False)
@staticmethod
def modified_weights(state_dict, modified=False):
state_dict = OrderedDict([(k.replace('.module', ''), v) for k, v in state_dict.items()])
if not modified:
return state_dict
modified_dict = dict()
return modified_dict
def load_checkpoint_weights(self, model, optimizer):
self.load_model_weights(model, self.arg.load_checkpoints)
state_dict = torch.load(self.arg.load_checkpoints, map_location=torch.device('cpu'))
if len(torch.cuda.get_rng_state_all()) == len(state_dict['rng_state']['cuda']):
print("Loading random seeds...")
self.rng.set_rng_state(state_dict['rng_state'])
if "optimizer_state_dict" in state_dict.keys():
print("Loading optimizer parameters...")
optimizer.load_state_dict(state_dict["optimizer_state_dict"])
optimizer.to(self.device.output_device)
if "scheduler_state_dict" in state_dict.keys():
print("Loading scheduler parameters...")
optimizer.scheduler.load_state_dict(state_dict["scheduler_state_dict"])
self.arg.optimizer_args['start_epoch'] = state_dict["epoch"] + 1
self.recoder.print_log("Resuming from checkpoint: epoch {self.arg.optimizer_args['start_epoch']}")
def load_data(self):
self.recoder.print_info("Loading data")
self.feeder = import_class(self.arg.feeder)
dataset_list = zip(["train", "train_val", "val"], [True, False, False])
kps_config = self.arg.feeder_args['kps_config']
for idx, (mode, train_flag) in enumerate(dataset_list):
arg = self.arg.feeder_args[mode.split('_')[0]]
arg['mode'] = mode.split('_')[0]
arg["kps_config"] = kps_config
arg["transform_mode"] = train_flag
self.dataset[mode] = self.feeder(
gloss_dict=self.gloss_dict,
osxposs=self.arg.aug_poss['osxposs'],
temporaltype=self.arg.model_args['temporal_arg']['type'],
**arg
)
self.data_loader[mode] = self.build_dataloader(self.dataset[mode], mode, train_flag)
self.recoder.print_info("Loading data finished.")
self.load_test_data()
def load_test_data(self):
self.recoder.print_info("Loading test data")
self.feeder = import_class(self.arg.feeder)
for scene in ['ITW', 'STU', 'SYN', 'TED']:
for view in ['kl', 'kr']:
kps_config = self.arg.feeder_args['kps_config']
mode, train_flag = 'test', False
arg = self.arg.feeder_args[mode]
arg['mode'] = mode.split('_')[0]
arg["kps_config"] = kps_config
arg["transform_mode"] = train_flag
input_list_file = f'./data/{mode}_{scene}_self.json'
indictor = f'test_{scene}_{view}'
self.dataset[indictor] = self.feeder(
gloss_dict=self.gloss_dict,
input_list_file=input_list_file,
view=view, # specify the view used
osxposs=self.arg.aug_poss['osxposs'],
temporaltype=self.arg.model_args['temporal_arg']['type'],
**arg
)
self.data_loader[indictor] = self.build_dataloader(self.dataset[indictor], mode, train_flag)
self.recoder.print_info("Loading data finished.")
def build_dataloader(self, dataset, mode, train_flag):
return torch.utils.data.DataLoader(
dataset,
batch_size=self.arg.batch_size if mode == "train" else self.arg.test_batch_size,
shuffle=train_flag,
drop_last=train_flag,
num_workers=self.arg.num_worker, # if train_flag else 0
collate_fn=lambda x:self.feeder.collate_fn(x,self.arg.model_args['temporal_arg']['type']),
)
def import_class(name):
components = name.rsplit('.', 1)
mod = importlib.import_module(components[0])
mod = getattr(mod, components[1])
return mod
if __name__ == '__main__':
sparser = utils.get_parser()
p = sparser.parse_args()
if p.config is not None:
with open(p.config, 'r') as f:
try:
default_arg = yaml.load(f, Loader=yaml.FullLoader)
except AttributeError:
default_arg = yaml.load(f)
key = vars(p).keys()
for k in default_arg.keys():
if k not in key:
print('WRONG ARG: {}'.format(k))
assert (k in key)
sparser.set_defaults(**default_arg)
args = sparser.parse_args()
processor = Processor(args)
processor.start()