This is the fusion stage training and inference of the VIPL-SLP submission for CV-ISLR challenge.
It worth noting that current version is unclean and needs a significant re-orgainzed.
Download the estimated keypoints, extracted RGB and depth features from alipan, and put them under the root of project:
- estimated keypoints: https://www.alipan.com/t/q5X0dN233lDMVAasaGyO
- extracted RGB features: https://www.alipan.com/t/T42Rgvw0VtlaggJji7tM
- extracted depth features: https://www.alipan.com/t/OI0nmWKwj71pE7epRx9e
Feel free to contact us if the link is invalid.
conda env create -f environment.yml
Download the pretrained weights from Google Drive and put them in the ./weights
- For RGB data:
python main.py --config ./configs/test_single_rgb.yaml --load-weights weights/single_rgb.pt
Expected performance: Average Topk-1 : 34.55%
- For skeleton data:
python main.py --config ./configs/test_single_skeleton.yaml --load-weights weights/sk_phase2.pt
Expected performance: Average Topk-1 : 46.00%
- For RGB+Skeleton data:
python main.py --config ./configs/test_fusion_rgbd.yaml --load-weights ./weights/fusion_rgbd.pt
Expected performance: Average Topk-1 : 56.87%
- For Depth data:
python main.py --config ./configs/test_single_depth.yaml --load-weights ./weights/single_depth.pt
Expected performance: Average Topk-1 : 28.84%
- For RGB+Skeleton+Depth data:
python main.py --config ./configs/test_fusion_rgbd.yaml --load-weights ./weights/fusion_rgbd.pt
Expected performance: Average Topk-1 : 57.98%
python main.py --config ./configs/train_fusion_rgb.yaml
python main.py --config ./configs/train_fusion_rgbd.yaml