Skip to content

PyTorch implementation of paper: adVAE: a Self-adversarial Variational Autoencoder with Gaussian Anomaly Prior Knowledge for Anomaly Detection

Notifications You must be signed in to change notification settings

WangXuhongCN/adVAE

Repository files navigation

About datasets

Letter, cardio, opticaldigts and pen datasets is available in ODDS library.
Satellite dataset can be download in Unsupervised Anomaly Detection Benchmark.
These datasets are also included in file folder "datasets".

Requirements

pytorch>=1.0
statsmodels>=0.9.0

The whole code is coming soon...

PyTorch implementation of paper: "adVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection", which has been accepted by Knowledge-based Systems.

Since my code is a little "academic", my code is not readable for followers. Fortunately, YeongHyeon and this benchmark has shared his implemention of adVAE.

The file "self_adVAE-test.ipynb" shows the results of adVAE. Until now, we have only uploaded some code to show the performance of the adVAE model.

Show results of adVAE

The following content is the same as the content in file "self_adVAE-test.ipynb".

from __future__ import print_function

import torch
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import (precision_recall_curve, auc,average_precision_score,
                             roc_curve,precision_score, recall_score,  f1_score)
import statsmodels.api as sm
from utils.plot_culve import plot_ROC,plot_PRC
import time
from load_data.tabular import load_tab_data
import models 
import random
import os
#import torch.utils.data
SEED=1
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
os.environ['PYTHONHASHSEED'] = str(SEED)
torch.cuda.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
torch.backends.cudnn.deterministic=True
torch.backends.cudnn.benchmark = False
def reparameterize_Ltimes(mu, logvar,L):
    std = torch.exp(0.5*logvar)
    std = std.unsqueeze(1).repeat(1,L, 1)
    mu = mu.unsqueeze(1).repeat(1,L, 1)
    eps = torch.randn_like(std)
    return eps.mul(std).add_(mu)
def trainset_anomaly_score(x_train,encoder,decoder):
    print('computing anomaly score in training dataset...')
    encoder.eval()
    decoder.eval()
    L=1000
    #x_recon_error=torch.FloatTensor(x_train.size()[0]).zero_()
    with torch.no_grad():
        mu_train, logvar_train=encoder(x_train)
        z_train=reparameterize_Ltimes(mu_train, logvar_train,L)
        x_recon=decoder(z_train)
        res=x_recon-x_train.unsqueeze(1).repeat(1,L,1)
        res=torch.mean(res, 1, keepdim=False)
        spe=torch.diag(torch.mm(res,torch.transpose(res, 0, 1)))
    return spe.cpu().numpy()
def testset_anomaly_score(x_test,encoder,decoder):
    print('computing anomaly score in testing dataset...')
    encoder.eval()
    decoder.eval()
    L=1000
    with torch.no_grad():
        mu_test, logvar_test=encoder(x_test)
        z_test=reparameterize_Ltimes(mu_test, logvar_test,L)       
        x_recon=decoder(z_test)
        res=x_recon-x_test.unsqueeze(1).repeat(1,L,1)
        res=torch.mean(res, 1, keepdim=False)
        spe=torch.diag(torch.mm(res,torch.transpose(res, 0, 1)))
    return spe.cpu().numpy()
def learning_threshold(train_recon_error,alpha):
    dens = sm.nonparametric.KDEUnivariate(train_recon_error.astype(np.float))
    bound = np.linspace(min(train_recon_error),max(train_recon_error),1024)
    dens.fit(bw='silverman',gridsize=1024)
    threshold=bound[min(np.where(dens.cdf>alpha)[0])]
    return threshold
def show_pre_recall_f1(test_recon_error,test_label,threshold):
    y_pred=test_recon_error.copy()
    larger_idx=np.where(y_pred>=threshold)
    lower_idx=np.where(y_pred<threshold)
    y_pred[lower_idx[0]]=0
    y_pred[larger_idx[0]]=1
    print('precision:',precision_score(test_label,y_pred))
    print('recall:',recall_score(test_label,y_pred))
    print('f1 score:',f1_score(test_label,y_pred))
def show_results(dataset_name):
    data_path='./datasets/'
    save_path='D:/GitHub/selfADVAE-AD/checkpoints'
    device='cuda'
    batch_size=32
    n_jobs_dataloader=0
    
    #load_dataset
    train_data,train_label,test_data,test_label,sample_dim,rep_dim=load_tab_data(data_path=data_path, dataset_name=dataset_name)
    scaler=MinMaxScaler().fit(train_data)
    train_data_scaled=scaler.transform(train_data) 
    test_data_scaled=scaler.transform(test_data) 
    x_train=torch.cuda.FloatTensor(train_data_scaled)
    x_test=torch.cuda.FloatTensor(test_data_scaled)
    
    # build model
    encoder = models.Encoder(sample_dim=sample_dim,rep_dim=rep_dim).to(device)
    decoder = models.Decoder(sample_dim=sample_dim,rep_dim=rep_dim).to(device)
    
    #load a well-trained adVAE model
    net_name=dataset_name+'selfADVAE' 
    encoder.load(save_path+'/'+net_name+'encoder')
    decoder.load(save_path+'/'+net_name+'decoder')
    
    #computing anomaly score
    train_recon_error=trainset_anomaly_score(x_train,encoder,decoder)
    start_time = time.time()
    test_recon_error=testset_anomaly_score(x_test,encoder,decoder)
    train_time = time.time() - start_time
    print('testing time: %.3f' % train_time)
    
    #learning_threshold
    threshold=learning_threshold(train_recon_error,0.9)
    print('threshold',threshold)
    
    show_pre_recall_f1(test_recon_error,test_label,threshold)
    
    # plot PRC and ROC
    plot_PRC(test_label, test_recon_error)
    plot_ROC(test_label, test_recon_error)
show_results(dataset_name='letter')
C:\Users\33\AppData\Local\conda\conda\envs\wxhdl\lib\site-packages\sklearn\utils\validation.py:595: DataConversionWarning: Data with input dtype uint8 was converted to float64 by MinMaxScaler.
  warnings.warn(msg, DataConversionWarning)


computing anomaly score in training dataset...
computing anomaly score in testing dataset...
testing time: 0.077


C:\Users\33\AppData\Local\conda\conda\envs\wxhdl\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
  return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval


threshold 0.2933588232025723
precision: 0.6869565217391305
recall: 0.79
f1 score: 0.7348837209302327

png

png

show_results(dataset_name='cardio')
computing anomaly score in training dataset...
computing anomaly score in testing dataset...
testing time: 0.016


C:\Users\33\AppData\Local\conda\conda\envs\wxhdl\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
  return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval


threshold 0.4963552884080193
precision: 0.7051282051282052
recall: 0.9375
f1 score: 0.8048780487804879

png

png

show_results(dataset_name='satellite')
C:\Users\33\AppData\Local\conda\conda\envs\wxhdl\lib\site-packages\sklearn\utils\validation.py:595: DataConversionWarning: Data with input dtype uint8 was converted to float64 by MinMaxScaler.
  warnings.warn(msg, DataConversionWarning)


computing anomaly score in training dataset...
computing anomaly score in testing dataset...
testing time: 0.041


C:\Users\33\AppData\Local\conda\conda\envs\wxhdl\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
  return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval


threshold 0.1571764530193421
precision: 0.5038759689922481
recall: 0.8666666666666667
f1 score: 0.6372549019607843

png

png

show_results(dataset_name='optdigits')
computing anomaly score in training dataset...
computing anomaly score in testing dataset...
testing time: 0.064


C:\Users\33\AppData\Local\conda\conda\envs\wxhdl\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
  return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval


threshold 1.1300515368697348
precision: 0.5597014925373134
recall: 1.0
f1 score: 0.7177033492822966

png

png

show_results(dataset_name='pendigits')
computing anomaly score in training dataset...
computing anomaly score in testing dataset...
testing time: 0.031


C:\Users\33\AppData\Local\conda\conda\envs\wxhdl\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
  return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval


threshold 0.47716992779044054
precision: 0.5454545454545454
recall: 1.0
f1 score: 0.7058823529411764

png

png

About

PyTorch implementation of paper: adVAE: a Self-adversarial Variational Autoencoder with Gaussian Anomaly Prior Knowledge for Anomaly Detection

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published