Skip to content

Learning robust travel preferences via check-in masking for next POI recommendation

Notifications You must be signed in to change notification settings

Wonderdch/RTP-CM

Repository files navigation

RTP-CM

This is the pytorch implementation of paper "Learning Robust Travel Preferences via Check-in Masking for Next POI Recommendation"

noise

model

Installation

pip install -r requirements.txt

Valid requirements

torch==2.0.1
numpy==1.24.3
pandas==2.0.2
Pillow==9.4.0
python-dateutil==2.8.2
pytz==2023.3
six==1.16.0
torchvision==0.15.2
typing_extensions==4.5.0

Train

  • Unzip raw_data/raw_data.zip to raw_data/. The three files are PHO, NYC and SIN check-in data.

  • Run data_preprocessor.py to construct input data.

    • Or unzip processed_data/processed_data.zip to processed_data/.
  • Train and evaluate the model using python main.py.

  • The training and evaluation results will be stored in result folder.

python main.py --name NYC_auto0.4
                --run-times 1
                --device cuda:0
                --dataset NYC
                --mask-strategy 0 --mask-proportion 0.4
                --area-proportion 0.2
                --embed-size 60 
                --transformer-layers 1 --transformer-heads 1
                --dropout 0.2
                --epochs 40
                --lr 1e-5

Cite our paper 🫡

ESWA2024

@article{RTP-CM2024,
	title = {Learning robust travel preferences via check-in masking for next {POI} recommendation},
	issn = {0957-4174},
	doi = {10.1016/j.eswa.2024.126106},
	pages = {126106},
	journaltitle = {Expert Systems with Applications},
	shortjournal = {Expert Systems with Applications},
	author = {Duan, Chenghua and Wen, Junhao and Zhou, Wei and Zeng, Jun and Zhang, Yihao},
	date = {2024-12-18},
	keywords = {Masking strategy, Noise reduction, {POI} recommendation}
}

Links may be useful ✨

About

Learning robust travel preferences via check-in masking for next POI recommendation

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages