Infrared Small Target Detection in Satellite Videos: A New Dataset and A Novel Recurrent Feature Refinement Framework
IRSatVideo-LEO is a large-scale dataset for multi-frame infrared small target (MIRST) detection in LEO satellite videos. IRSatVideo-LEO is a semi-simulated dataset with a real satellite background image and synthesized satellite motion, target appearance, trajectory and intensity. IRSatVideo-LEO consists of 200 image sequences, 91021 frames and 218038 targets, and we provide instance-level segmentation annotations to offer a infrared LEO satellite videos benchmark for MIRST detection and tracking.
Table 1 Details of parameters for data generation.
Table 2 Statical comparisons among existing SIRST and MIRST detection datasets and our IRSatVideo-LEO dataset.
Fig. 2 Illustrations of sequence attributes.
Fig. 3 Illustrations of target attributes.
Fig. 4 Illustration of background attributes and example images.
Fig. 5 The proposed architecture of recurrent feature refinement framework.
- Python 3.8
- pytorch (1.10.1+cu11.1), torchvision (0.11.2+cu11.1)
DCN Compiling
- Cd to
./codes/model/dcn
. - Run
bash make.sh
. The scripts will build D3D automatically and create some folders. - See
test.py
for example usage.
- Run
train.py
to perform network training. Example for training [model_name] on [dataset_name] datasets:$ cd ./codes $ python train.py --model_name ['ISTUDNet_RFR', 'ResUNet_RFR'] --dataset_name ['IRSatVideo-LEO']
- Checkpoints and Logs will be saved to
./codes/log/
, and the./codes/log/
has the following structure:├──./codes/log/ │ ├── [dataset_name] │ │ ├── [model_name]_20.pth.tar
Download the IRSatVideo-LEO Dataset dataset and put the images in ./codes/data/IRSatVideo-LEO
.
IRSatVideo-LEO
└── images
├── AfricaWest-1_38
├── 0000.png
├── 0001.png
├── ...
├── EastAfrica-0
├── 0000.png
├── 0001.png
├── ...
├── ...
└── masks
├── AfricaWest-1_38
├── 0000.png
├── 0001.png
├── ...
├── EastAfrica-0
├── 0000.png
├── 0001.png
├── ...
├── ...
└── video_idx
├── train_IRSatVideo-LEO.txt
├── test_IRSatVideo-LEO.txt
├── test_IRSatVideo-LEO-easy.txt
├── test_IRSatVideo-LEO-middle.txt
├── test_IRSatVideo-LEO-hard.txt
└── img_idx
├── AfricaWest-1_38.txt
├── EastAfrica-0.txt
├── ...
-
Run
test.py
to perform network inference. Example for test [model_name] on [dataset_name] datasets:$ cd ./codes $ python test.py --model_name ['ISTUDNet_RFR', 'ResUNet_RFR'] --dataset_name ['IRSatVideo-LEO'] --save_img True
-
The PA/mIoU and PD/FA values of each dataset will be saved to
./test_[current time].txt
-
Network preditions will be saved to
./results/
that has the following structure:├──./results/ │ ├── [dataset_name] │ │ ├── [model_name] │ │ │ ├── 0000.png │ │ │ ├── 0001.png │ │ │ ├── ...
Table 3
Please contact us at [email protected] for any questions.
@article{RFR,
author = {Xinyi Ying, Li Liu, Zaipin Lin, Yangsi Shi, Yingqian Wang, Ruojing Li, Xu Cao, Boyang Li, Shilin Zhou},
title = {Infrared Small Target Detection in Satellite Videos: A New Dataset and A Novel Recurrent Feature Refinement Framework},
journal = {Arxiv},
year = {2024},
}