Skip to content

XueZ-phd/Efficient-RGB-T-Early-Fusion-Detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Efficient-RGB-T-Early-Fusion-Detection

This is the official repository for our paper "Rethinking Early-Fusion Strategies for Improved Multispectral Object Detection".

Our main contributions are summarized as follows:

  • Different from previous works, we summarize three key obstacles limiting the early-fusion strategy, including information interference, domain gap, and representation learning.

  • For each obstacle, we propose the corresponding solution: we develop 1) a ShaPE module to address the information interference issue, 2) a weakly supervised learning method to reduce domain gap and improve semantic localization abilities, and 3) a CoreKD to enhance the representation learning of single-branch networks.

  • Extensive experiments validate that the early-fusion strategy, equipped with our ShaPE module, weakly supervised learning, and CoreKD technique, shows significant improvement. Additionally, we only retain the ShaPE module during the inference phase. Consequently, our method is efficient and achieves improved performance.

Environmental Requirements

  • Our code is implemented using both MMDetection and YOLOv5. You are encouraged to install these environments using Anaconda.

  • In our MMDetection environment, we use:

      python==3.8.18
      torch==1.12.1+cu111
      torchvision==0.13.1+cu111
      mmcv==2.1.0
      mmdet==3.2.0
    
  • In our YOLOv5 environment, we use:

      python==3.7.16
      torch==1.12.1+cu111
      torchvision==0.13.1+cu111
    

Dataset

M3FD dataset can be found here. This dataset doesn't provide a unified data split. In this paper, we provide the M3FD-zxSplit. In the dataset/m3fd-zxSplit folder, we upload the train.txt and test.txt files.

FLIR dataset can be found at here.


We take the M3FD dataset as an example and describe the dataset generation process.

  • First, we download the images of the M3FD_Detection dataset here, and unzip M3FD_Detection.zip into the dataset folder.

      ├─dataset
      │  │  splitM3FD_zxSceneSplit.py
      │  │  
      │  ├─M3FD
      │  │  └─M3FD_Detection
      │  └─m3fd-zxSplit
      │          test.txt
      │          train.txt
      ...
    
  • Then, we obtain the YOLO-format and COCO-format datasets by running the following commands:

      cd ./dataset
      # ATTENTION: Please ensure the m3fd dataset has been downloaded and unzipped here!
      # build the YOLO-format dataset
      python ./splitM3FD_zxSceneSplit.py
      # build the COCO-format dataset
      python ./m3fd2coco.py
    

Inference

  • We upload the necessary files to the mmdetection folder, which are required to be merged into the MMDetection repository.

  • Model checkpoints can be downloaded from this cloud link, extractor code: ckpt. Download and unzip the it into the mmdetection folder.

      ...
      │      
      └─mmdetection
      	│  runs.zip
      	│  
      	...
    

  • Detection result using only thermal images

      cd mmdetection
      python tools/test.py ./runs/train/M3FD_thermal_gfl_r50_fpn_1x_bs4/gfl_r50_fpn_1x_m3fd.py ./runs/train/M3FD_thermal_gfl_r50_fpn_1x_bs4/epoch_12.pth --work-dir ./runs/inference
    
  • The result is

      +------------+-------+--------+--------+-------+-------+-------+
      | category   | mAP   | mAP_50 | mAP_75 | mAP_s | mAP_m | mAP_l |
      +------------+-------+--------+--------+-------+-------+-------+
      | People     | 0.35  | 0.646  | 0.342  | 0.15  | 0.553 | 0.723 |
      | Car        | 0.477 | 0.739  | 0.501  | 0.127 | 0.48  | 0.797 |
      | Bus        | 0.36  | 0.542  | 0.383  | 0.0   | 0.122 | 0.544 |
      | Motorcycle | 0.212 | 0.365  | 0.219  | 0.0   | 0.193 | 0.622 |
      | Lamp       | 0.052 | 0.152  | 0.03   | 0.024 | 0.25  | nan   |
      | Truck      | 0.336 | 0.477  | 0.38   | 0.001 | 0.316 | 0.625 |
      +------------+-------+--------+--------+-------+-------+-------+
      05/01 23:07:32 - mmengine - INFO - bbox_mAP_copypaste: 0.298 0.487 0.309 0.050 0.319 0.662
    

  • Detection result using plain RGB-T early-fusion strategy

      python tools/test.py ./runs/train/M3FD_rgbtEarly_gfl_r50_fpn_1x_bs4/gfl_r50_fpn_1x_m3fd.py ./runs/train/M3FD_rgbtEarly_gfl_r50_fpn_1x_bs4/epoch_12.pth --work-dir ./runs/inference
    
  • The result is

      +------------+-------+--------+--------+-------+-------+-------+
      | category   | mAP   | mAP_50 | mAP_75 | mAP_s | mAP_m | mAP_l |
      +------------+-------+--------+--------+-------+-------+-------+
      | People     | 0.358 | 0.64   | 0.36   | 0.147 | 0.572 | 0.755 |
      | Car        | 0.538 | 0.784  | 0.586  | 0.197 | 0.559 | 0.824 |
      | Bus        | 0.379 | 0.545  | 0.409  | 0.089 | 0.159 | 0.56  |
      | Motorcycle | 0.248 | 0.395  | 0.279  | 0.002 | 0.293 | 0.586 |
      | Lamp       | 0.136 | 0.297  | 0.101  | 0.08  | 0.479 | nan   |
      | Truck      | 0.373 | 0.523  | 0.415  | 0.005 | 0.339 | 0.679 |
      +------------+-------+--------+--------+-------+-------+-------+
      05/01 23:15:39 - mmengine - INFO - bbox_mAP_copypaste: 0.339 0.531 0.358 0.087 0.400 0.681
    

  • Detection result using ShaPE module

      python tools/test.py ./runs/train/M3FD_rgbtEarly_zxModifiedStem_gfl_r50_fpn_1x_bs4/gfl_r50_fpn_1x_m3fd.py ./runs/train/M3FD_rgbtEarly_zxModifiedStem_gfl_r50_fpn_1x_bs4/epoch_12.pth --work-dir ./runs/inference
    
  • The result is

      +------------+-------+--------+--------+-------+-------+-------+
      | category   | mAP   | mAP_50 | mAP_75 | mAP_s | mAP_m | mAP_l |
      +------------+-------+--------+--------+-------+-------+-------+
      | People     | 0.371 | 0.658  | 0.364  | 0.155 | 0.586 | 0.757 |
      | Car        | 0.547 | 0.791  | 0.59   | 0.197 | 0.572 | 0.836 |
      | Bus        | 0.454 | 0.63   | 0.486  | 0.137 | 0.204 | 0.65  |
      | Motorcycle | 0.227 | 0.419  | 0.231  | 0.001 | 0.241 | 0.61  |
      | Lamp       | 0.14  | 0.302  | 0.113  | 0.086 | 0.48  | nan   |
      | Truck      | 0.385 | 0.542  | 0.425  | 0.003 | 0.364 | 0.691 |
      +------------+-------+--------+--------+-------+-------+-------+
      05/01 23:20:58 - mmengine - INFO - bbox_mAP_copypaste: 0.354 0.557 0.368 0.096 0.408 0.709
    

  • Detection result using ShaPE + Weakly Supervised Learning

      python tools/test.py ./runs/train/M3FD_rgbtEarly_zxModifiedStem_gfl_r50_fpn_1x_bs4_clipTransfer/gfl_r50_fpn_1x_m3fd.py ./runs/train/M3FD_rgbtEarly_zxModifiedStem_gfl_r50_fpn_1x_bs4_clipTransfer/epoch_12.pth --work-dir ./runs/inference
    
  • The result is

      +------------+-------+--------+--------+-------+-------+-------+
      | category   | mAP   | mAP_50 | mAP_75 | mAP_s | mAP_m | mAP_l |
      +------------+-------+--------+--------+-------+-------+-------+
      | People     | 0.366 | 0.651  | 0.362  | 0.157 | 0.575 | 0.766 |
      | Car        | 0.555 | 0.798  | 0.601  | 0.205 | 0.58  | 0.843 |
      | Bus        | 0.468 | 0.66   | 0.511  | 0.077 | 0.239 | 0.651 |
      | Motorcycle | 0.238 | 0.418  | 0.241  | 0.0   | 0.249 | 0.625 |
      | Lamp       | 0.139 | 0.309  | 0.112  | 0.081 | 0.497 | nan   |
      | Truck      | 0.389 | 0.54   | 0.424  | 0.004 | 0.368 | 0.693 |
      +------------+-------+--------+--------+-------+-------+-------+
      05/01 23:27:45 - mmengine - INFO - bbox_mAP_copypaste: 0.359 0.563 0.375 0.087 0.418 0.715
    

  • Detection result using our EME method

      python tools/test.py ./runs/train/M3FD_coreKD_rgbtEarly_zxModifiedStem_gfl_r101tor50_fpn_1x_bs4_clipTransfer/gfl_r50_fpn_1x_m3fd_kdMed2Ear.py ./runs/train/M3FD_coreKD_rgbtEarly_zxModifiedStem_gfl_r101tor50_fpn_1x_bs4_clipTransfer/epoch_10.pth --work-dir ./runs/inference
    
  • The result is

      +------------+-------+--------+--------+-------+-------+-------+
      | category   | mAP   | mAP_50 | mAP_75 | mAP_s | mAP_m | mAP_l |
      +------------+-------+--------+--------+-------+-------+-------+
      | People     | 0.387 | 0.685  | 0.383  | 0.18  | 0.591 | 0.776 |
      | Car        | 0.558 | 0.813  | 0.604  | 0.216 | 0.581 | 0.85  |
      | Bus        | 0.465 | 0.633  | 0.511  | 0.08  | 0.2   | 0.694 |
      | Motorcycle | 0.278 | 0.427  | 0.327  | 0.008 | 0.353 | 0.629 |
      | Lamp       | 0.16  | 0.359  | 0.122  | 0.103 | 0.511 | nan   |
      | Truck      | 0.377 | 0.539  | 0.432  | 0.01  | 0.344 | 0.701 |
      +------------+-------+--------+--------+-------+-------+-------+
      05/01 23:32:26 - mmengine - INFO - bbox_mAP_copypaste: 0.371 0.576 0.396 0.099 0.430 0.730
    

  • Detection result using ShaPE but with EME Checkpoint

    This setting demonstrates that only the ShaPE module is retained during the inference phase, while weakly supervised learning and coreKD are removed.

      python tools/test.py ./runs/train/M3FD_rgbtEarly_zxModifiedStem_gfl_r50_fpn_1x_bs4/gfl_r50_fpn_1x_m3fd.py ./runs/train/M3FD_coreKD_rgbtEarly_zxModifiedStem_gfl_r101tor50_fpn_1x_bs4_clipTransfer/epoch_10.pth --work-dir ./runs/inference
    
  • The result is

      +------------+-------+--------+--------+-------+-------+-------+
      | category   | mAP   | mAP_50 | mAP_75 | mAP_s | mAP_m | mAP_l |
      +------------+-------+--------+--------+-------+-------+-------+
      | People     | 0.387 | 0.685  | 0.383  | 0.18  | 0.591 | 0.776 |
      | Car        | 0.558 | 0.813  | 0.604  | 0.216 | 0.581 | 0.85  |
      | Bus        | 0.465 | 0.633  | 0.511  | 0.08  | 0.2   | 0.694 |
      | Motorcycle | 0.278 | 0.427  | 0.327  | 0.008 | 0.353 | 0.629 |
      | Lamp       | 0.16  | 0.359  | 0.122  | 0.103 | 0.511 | nan   |
      | Truck      | 0.377 | 0.539  | 0.432  | 0.01  | 0.344 | 0.701 |
      +------------+-------+--------+--------+-------+-------+-------+
      05/01 23:55:59 - mmengine - INFO - bbox_mAP_copypaste: 0.371 0.576 0.396 0.099 0.430 0.730
    

About

official implementation of EME

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages