forked from amueller/word_cloud
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
63 additions
and
22 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
import numpy as np | ||
from PIL import ImageFont | ||
|
||
|
||
class ImageColorGenerator(object): | ||
# returns the average color of the image in that region | ||
def __init__(self, image): | ||
if image.ndim not in [2, 3]: | ||
raise ValueError("ImageColorGenerator needs an image with ndim 2 or" | ||
" 3, got %d" % image.ndim) | ||
if image.ndim == 3 and image.shape[2] not in [3, 4]: | ||
raise ValueError("A color image needs to have 3 or 4 channels, got %d" | ||
% image.shape[2]) | ||
self.image = image | ||
|
||
def __call__(self, word, font_size, font_path, position, orientation, **kwargs): | ||
# get the font to get the box size | ||
font = ImageFont.truetype(font_path, font_size) | ||
transposed_font = ImageFont.TransposedFont(font, | ||
orientation=orientation) | ||
# get size of resulting text | ||
box_size = transposed_font.getsize(word[0]) | ||
x = position[0] | ||
y = position[1] | ||
# cut out patch under word box | ||
patch = self.image[x:x + box_size[0], y:y + box_size[1]] | ||
if patch.ndim == 3: | ||
# drop alpha channel if any | ||
patch = patch[:, :, :3] | ||
if patch.ndim == 2: | ||
raise NotImplementedError("Gray-scale images TODO") | ||
color = np.mean(patch.reshape(-1, 3), axis=0) | ||
return "rgb(%d, %d, %d)" % tuple(color) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,9 +1,11 @@ | ||
# Author: Andreas Christian Mueller <[email protected]> | ||
# Author: Andreas Christian Mueller <[email protected]> | ||
# | ||
# (c) 2012 | ||
# Modified by: Paul Nechifor <[email protected]> | ||
# | ||
# License: MIT | ||
|
||
import warnings | ||
from random import Random | ||
import os | ||
import re | ||
|
@@ -23,7 +25,8 @@ | |
'stopwords')).read().split('\n')]) | ||
|
||
|
||
def random_color_func(word, font_size, position, orientation, random_state=None): | ||
def random_color_func(word=None, font_size=None, position=None, | ||
orientation=None, font_path=None, random_state=None): | ||
"""Random hue color generation. | ||
Default coloring method. This just picks a random hue with value 80% and | ||
|
@@ -65,10 +68,11 @@ class WordCloud(object): | |
The ratio of times to try horizontal fitting as opposed to vertical. | ||
mask : nd-array or None (default=None) | ||
If not None, gives a binary mask on where to draw words. All zero | ||
entries will be considered "free" to draw on, while all non-zero | ||
entries will be deemed occupied. If mask is not None, width and height will be | ||
ignored and the shape of mask will be used instead. | ||
If not None, gives a binary mask on where to draw words. If mask is not | ||
None, width and height will be ignored and the shape of mask will be | ||
used instead. All white (#FF or #FFFFFF) entries will be considerd | ||
"masked out" while other entries will be free to draw on. [This | ||
changed in the most recent version!] | ||
scale : float (default=1) | ||
Scaling between computation and drawing. For large word-cloud images, | ||
|
@@ -173,22 +177,21 @@ def generate_from_frequencies(self, frequencies): | |
% len(frequencies)) | ||
|
||
if self.mask is not None: | ||
width = self.mask.shape[1] | ||
height = self.mask.shape[0] | ||
mask = self.mask | ||
width = mask.shape[1] | ||
height = mask.shape[0] | ||
if mask.dtype.kind == 'f': | ||
# threshold float images | ||
mask = mask >= .5 | ||
elif mask.dtype.kind == 'i': | ||
# threshold ubyte images | ||
mask = mask >= 128 | ||
if self.mask.ndim == 3: | ||
# "OR" all channels | ||
mask = mask.sum(axis=-1) > 0 | ||
if mask.ndim != 2: | ||
warnings.warn("mask image should be unsigned byte between 0 and" | ||
"255. Got a float array") | ||
if mask.ndim == 2: | ||
boolean_mask = mask == 255 | ||
elif mask.ndim == 3: | ||
# "OR" the color channels | ||
boolean_mask = np.sum(mask[:, :, :3] == 255, axis=-1) | ||
else: | ||
raise ValueError("Got mask of invalid shape: %s" % str(mask.shape)) | ||
# the order of the cumsum's is important for speed ?! | ||
integral = np.cumsum(np.cumsum(mask, axis=1), axis=0).astype(np.uint32) | ||
integral = np.cumsum(np.cumsum(boolean_mask * 255, axis=1), axis=0).astype(np.uint32) | ||
else: | ||
height, width = self.height, self.width | ||
integral = np.zeros((height, width), dtype=np.uint32) | ||
|
@@ -237,13 +240,16 @@ def generate_from_frequencies(self, frequencies): | |
positions.append((x, y)) | ||
orientations.append(orientation) | ||
font_sizes.append(font_size) | ||
colors.append(self.color_func(word, font_size, (x, y), orientation, | ||
random_state=random_state)) | ||
colors.append(self.color_func(word, font_size=font_size, | ||
position=(x, y), | ||
orientation=orientation, | ||
random_state=random_state, | ||
font_path=self.font_path)) | ||
# recompute integral image | ||
if self.mask is None: | ||
img_array = np.asarray(img_grey) | ||
else: | ||
img_array = np.asarray(img_grey) + mask | ||
img_array = np.asarray(img_grey) + boolean_mask | ||
# recompute bottom right | ||
# the order of the cumsum's is important for speed ?! | ||
partial_integral = np.cumsum(np.cumsum(img_array[x:, y:], axis=1), | ||
|
@@ -406,7 +412,9 @@ def recolor(self, random_state=None, color_func=None): | |
if color_func is None: | ||
color_func = self.color_func | ||
self.layout_ = [(word, font_size, position, orientation, | ||
color_func(word, font_size, position, orientation, random_state)) | ||
color_func(word=word, font_size=font_size, | ||
position=position, orientation=orientation, | ||
random_state=random_state, font_path=self.font_path)) | ||
for word, font_size, position, orientation, _ in self.layout_] | ||
return self | ||
|
||
|