Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
YangLiu9208 authored Apr 25, 2023
1 parent 099d481 commit f7a8b46
Showing 1 changed file with 1 addition and 1 deletion.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ For more details, please refer to our paper [Cross-Modal Causal Relational Reaso
Homepage: [https://yangliu9208.github.io/home/](https://yangliu9208.github.io/home/)

### Abstract
Existing visual question answering methods tend to capture the spurious correlations from visual and linguistic modalities, and fail to discover the true casual mechanism that facilitates reasoning truthfully based on the dominant visual evidence and the correct question intention. Additionally, the existing methods usually ignore the complex event-level understanding in multi-modal settings that requires a strong cognitive capability of causal inference to jointly model cross-modal event temporality, causality, and dynamics. In this work, we focus on event-level visual question answering from a new perspective, i.e., cross-modal causal relational reasoning, by introducing causal intervention methods to mitigate the spurious correlations and discover the true causal structures for the integration of visual and linguistic modalities. Specifically, we propose a novel event-level visual question answering framework named Cross-Modal Causal RelatIonal Reasoning (CMCIR), which consists of three essential components named causality-aware visual-linguistic reasoning module, spatial-temporal transformer, and visual-linguistic feature fusion module, to achieve robust casuality-aware visual-linguistic question answering. To uncover the causal structures for visual and linguistic modalities, the novel Causality-aware Visual-Linguistic Reasoning (CVLR) module is proposed to collaboratively disentangle the visual and linguistic spurious correlations via elaborately designed front-door and back-door causal intervention modules. To discover the fine-grained interactions between linguistic semantics and spatial-temporal representations, we build a novel Spatial-Temporal Transformer (STT) that builds the multi-modal co-occurrence interactions between visual and linguistic content. To adaptively fuse the causality-ware visual and linguistic features, we introduce a Visual-Linguistic Feature Fusion (VLFF) module that leverages the hierarchical linguistic semantic relations as the guidance to learn the global semantic-aware visual-linguistic representations adaptively. Extensive experiments on large-scale event-level urban dataset SUTD-TrafficQA and three benchmark real-world datasets TGIF-QA, MSVD-QA, and MSRVTT-QA demonstrate the effectiveness of our CMCIR for discovering visual-linguistic causal structures and achieving robust event-level visual question answering.
Existing visual question answering methods often suffer from cross-modal spurious correlations and oversimplified event-level reasoning processes that fail to capture event temporality, causality, and dynamics spanning over the video. In this work, to address the task of event-level visual question answering, we propose a framework for cross-modal causal relational reasoning. In particular, a set of causal intervention operations is introduced to discover the underlying causal structures across visual and linguistic modalities. Our framework, named Cross-Modal Causal RelatIonal Reasoning (CMCIR), involves three modules: i) Causality-aware Visual-Linguistic Reasoning (CVLR) module for collaboratively disentangling the visual and linguistic spurious correlations via front-door and back-door causal interventions; ii) Spatial-Temporal Transformer (STT) module for capturing the fine-grained interactions between visual and linguistic semantics; iii) Visual-Linguistic Feature Fusion (VLFF) module for learning the global semantic-aware visual-linguistic representations adaptively. Extensive experiments on four event-level datasets demonstrate the superiority of our CMCIR in discovering visual-linguistic causal structures and achieving robust event-level visual question answering.

### Model
![Image](Fig1.png)
Expand Down

0 comments on commit f7a8b46

Please sign in to comment.