forked from YinHan-Zhang/TYUT-TreamLearning
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
28 changed files
with
277 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,277 @@ | ||
# Miniconda+Jupyter 小白设置指南(Windows) | ||
|
||
## **前言** | ||
|
||
* 关于 Conda 和 Jupyter 的说明 | ||
|
||
Conda 是一种环境管理软件,尤其是 Python2 和 Python3 不兼容的情况下,**Conda 可以建立多个相互隔离的虚拟环境**,让不同的程序在不用的 Python 版本以及不同版本的包下运行。 | ||
|
||
[Jupyter Notebook](https://link.zhihu.com/?target=https%3A//jupyter.org/) 是基于网页的用于交互计算的应用程序。其可被应用于全过程计算:开发、文档编写、运行代码和展示结果。简而言之可以**直接编写代码**,**运行代码**,**运行结果**也会直接显示在代码块下方。 | ||
|
||
另外,强烈建议下载 VSCode,VSCode 自带的 Juputer 插件和 Python 插件可以完美兼容 Miniconda 和 Jupyter,使用起来比专门打开 Jupyter 网页端更为顺滑。 | ||
|
||
## 0.准备 | ||
|
||
首先你需要有一台电脑 然后你需要保证这个电脑是干净的:没有额外安装 Python ,没有安装miniconda/conda这些环境管理软件(建议小白从零开始,大佬请忽略) | ||
|
||
## 1.Miniconda 安装配置 | ||
|
||
### 1.1下载 Miniconda | ||
|
||
Miniconda 下载地址:[https://docs.conda.io/en/latest/miniconda.html](https://gitee.com/link?target=https%3A%2F%2Fdocs.conda.io%2Fen%2Flatest%2Fminiconda.html) | ||
|
||
最新版 Miniconda For Windows 下载链接: | ||
|
||
[https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe](https://gitee.com/link?target=https%3A%2F%2Frepo.anaconda.com%2Fminiconda%2FMiniconda3-latest-Windows-x86_64.exe) | ||
|
||
### 1.2Windows 下安装配置 | ||
|
||
#### (1)开始安装 | ||
|
||
- Just Me (recommended) (无需管理员权限) | ||
- Clear the package cache upon completion | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_01.png) | ||
|
||
#### (2)点击安装程序,选择路径 | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_02.png) | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_03.png) | ||
|
||
* **环境变量选择(PATH):**在这一步不建议勾选第二个环境变量选项,建议在之后手动添加环境变量以防止环境变量污染的问题。 | ||
* 一路next安装完成 | ||
* 检验是否安装成功,在开始菜单出,左击 Anaconda Prompt | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_04.png) | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_05.png) | ||
|
||
* 打开后,左边有 (base),即安装成功 | ||
|
||
#### (3) 环境变量配置 | ||
|
||
* 这里我使用的是win11(win10系统的同学可以自己找一下高级选项,或者询问度娘) | ||
* **windows图标右键**-->**系统** -->**高级系统设置** | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_06.png) | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_07.png) | ||
|
||
* 上方选项卡“高级” --> “环境变量”按钮 | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_08.png) | ||
|
||
* 对“Path”进行设置 | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_09.png) | ||
|
||
* 新建对应环境变量 | ||
* **注意:我的miniconda安装路径为“`D:\MiniConda`”,设置时修改为自己的安装路径** | ||
|
||
``` | ||
D:\MiniConda | ||
D:\MiniConda\Scripts | ||
D:\MiniConda\Library\bin | ||
``` | ||
|
||
#### (4)conda 换源(镜像服务器) | ||
|
||
由于 miniconda 下载文件/依赖库等默认的采用国外的服务器,下载速度很慢,一般改为国内的清华源/阿里源等方式解决。我这里安装的是[清华源](https://link.zhihu.com/?target=https%3A//mirrors.tuna.tsinghua.edu.cn/help/anaconda/)。 | ||
|
||
* “Win”+R 打开“运行”,输入cmd进入cmd终端,依次输入以下两行(每输入一行后回车) | ||
|
||
```text | ||
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ | ||
conda config --set show_channel_urls yes | ||
``` | ||
|
||
* 第一行代码添加清华源 第二行代码生成".condarc"文件 | ||
* 打开`C:\Users\"用户名"\.condarc`找到该文件 | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_11.png) | ||
|
||
* 将第一步中清华源下载界面的内容复制进去然后保存 | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_12.png) | ||
|
||
* 在PowerShell中输入以下代码清除索引缓存,就可以使用了 | ||
|
||
``` | ||
conda clean -i | ||
``` | ||
|
||
#### (5)conda安装成功验证 | ||
|
||
* 安装成功后,输入查看conda环境/版本相关信息 | ||
|
||
``` | ||
conda info | ||
conda --version | ||
``` | ||
|
||
* 若出现以下界面,说明安装成功 | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_13.png) | ||
|
||
#### (6)pip换源 | ||
|
||
* pip 是Python安装第三方包的管理工具,该工具提供了对Python 包的查找、下载、安装、卸载的功能。我们安装完conda环境pip就是最新的了 | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_14.png) | ||
|
||
* 复制文本后,在 **Anaconda Powershell Prompt** 中粘贴运行创建pip.ini文件 | ||
|
||
``` | ||
# 设置 PyPI 镜像源 | ||
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple | ||
``` | ||
|
||
* 这里我用的清华源,复制以下配置项到pip.ini文件中即可 | ||
|
||
``` | ||
[global] | ||
index-url = https://pypi.tuna.tsinghua.edu.cn/simple | ||
[install] | ||
trusted-host = https://pypi.tuna.tsinghua.edu.cn | ||
``` | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_18.png) | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_17.png) | ||
|
||
#### (7)创建与激活conda环境 | ||
|
||
* 打开**Anaconda Powershell Prompt**输入以下命令 | ||
* 第一次激活 conda 虚拟环境需要初始化 | ||
|
||
``` | ||
conda init | ||
``` | ||
|
||
* 创建conda环境 | ||
* 其中 ***-n*** 代表创建的环境名称,这里是 ***Datawhale***,并指定 ***Python 版本为 3.11*** | ||
|
||
``` | ||
conda create -n Datawhale python=3.11 | ||
``` | ||
|
||
* 激活conda环境 | ||
|
||
``` | ||
conda activate Datawhale | ||
``` | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_15.png) | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_16.png) | ||
|
||
* 如果需要删除某个 Conda 环境: | ||
|
||
``` | ||
conda deactivate # 退出该环境 | ||
conda remove -n Datawhale --all # 删除整个环境 | ||
``` | ||
|
||
## 2.安装Jupyter | ||
|
||
**下面提供两种安装Jupyter的方法(推荐conda安装)** | ||
|
||
### 2.1conda安装Jupyter | ||
|
||
打开**Anaconda Powershell Prompt**输入以下命令 | ||
|
||
* 进入虚拟环境(这里用的刚刚的Datawhale环境) | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_22.png) | ||
|
||
* 安装Jupyter | ||
|
||
``` | ||
conda install jupyter notebook | ||
``` | ||
|
||
* 安装成功以后菜单会出现notebook | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_24.png) | ||
|
||
* 点击运行即可 | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_23.png) | ||
|
||
* 运行成功会自动跳转到浏览器 | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_25.png) | ||
|
||
### 2.2pip安装Jupyter | ||
|
||
* 命令行运行代码,第二行出现的就是刚刚配置的清华源 | ||
|
||
``` | ||
pip install jupyter | ||
``` | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_19.png) | ||
|
||
* 在指定路径输入会跳转到浏览器 | ||
|
||
``` | ||
jupyter-notebook | ||
``` | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_20.png) | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_21.png) | ||
|
||
* 结束学习时关掉命令行窗口或者使用: | ||
|
||
``` | ||
Ctrl + C # 关闭 Jupyter Notebook 服务 | ||
``` | ||
|
||
### 2.3Jupter默认空间设置 | ||
|
||
运行 Jupyter 后会出现一堆文件夹,这是你的`\Home`目录里面的目录文件,如果不希望今后编写的 Jupyter Notebook 文件都直接放在该目录下,就需要修改 Jupyter Notebook 的存放路径。 | ||
|
||
打开文件,查找`c.NotebookApp.notebook_dir`,删除注释符号,并将目标文件夹路径复制黏贴到后面的`''`中。保存文件。 | ||
|
||
* 获取配置文件路径 | ||
|
||
``` | ||
jupyter notebook --generate-config | ||
``` | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_26.png) | ||
|
||
* 打开文件,CTRL + F 找到notebook_dir,删除注释符号,并将目标文件夹路径复制黏贴到后面的`''`中。保存文件。 | ||
|
||
![](C:\Users\yangf\Desktop\DW_Learning\TYUT-TreamLearning\Note\yangfeifan_note\picture\pic_27.png) | ||
|
||
***python相关包举例*** | ||
|
||
- 科学计算相关 | ||
|
||
- - numpy | ||
- pandas | ||
- scipy | ||
- scikit-learn | ||
|
||
- 绘图相关 | ||
|
||
- - matplotlib | ||
- seaborn | ||
|
||
- Jupyter Notebook相关 | ||
|
||
- - jupyter | ||
- notebook | ||
- ipykernel | ||
- nb_conda_kernels | ||
|
||
- 其他 | ||
|
||
- - beautifulsoup4 | ||
- reportlab | ||
|
||
## 3.vscode安装 | ||
|
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Oops, something went wrong.
Oops, something went wrong.