Skip to content

Commit

Permalink
Fix cosine similarity dim checks (pytorch#66214)
Browse files Browse the repository at this point in the history
* fix cosine similarity dimensionality check

* fix shapes in the doc
  • Loading branch information
Natalia Gimelshein authored Oct 8, 2021
1 parent 1774a6a commit 9509e8a
Show file tree
Hide file tree
Showing 4 changed files with 11 additions and 20 deletions.
9 changes: 3 additions & 6 deletions aten/src/ATen/native/Distance.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -240,14 +240,11 @@ Tensor _pdist_backward(const Tensor& grad, const Tensor& self, const double p, c
}

Tensor cosine_similarity(const Tensor& x1, const Tensor& x2, int64_t dim, double eps) {
TORCH_CHECK(x1.ndimension() == x2.ndimension(), "cosine_similarity requires both inputs to have the same number of dimensions, but x1 has ",
x1.ndimension(), " and x2 has ", x2.ndimension());
TORCH_CHECK(x1.ndimension() == 0 || x1.size(dim) == x2.size(dim), "cosine_similarity requires both inputs to have the same size at dimension ", dim, "but x1 has ",
x1.size(dim), " and x2 has ", x2.size(dim));
auto common_size = at::infer_size_dimvector(x1.sizes(), x2.sizes());
auto commonDtype = at::result_type(x1, x2);
TORCH_CHECK(at::isFloatingType(commonDtype), "expected common dtype to be floating point, yet common dtype is ", commonDtype);
Tensor x1_ = x1.to(commonDtype);
Tensor x2_ = x2.to(commonDtype);
Tensor x1_ = x1.to(commonDtype).expand(common_size);
Tensor x2_ = x2.to(commonDtype).expand(common_size);
// Follow scipy impl to improve numerical precision
// Use x / sqrt(x * x) instead of x / (sqrt(x) * sqrt(x))
Tensor w12 = at::sum(x1_ * x2_, dim);
Expand Down
6 changes: 0 additions & 6 deletions test/test_nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -9704,12 +9704,6 @@ def test_cosine_similarity(self):
self.assertEqual(input1.grad, torch.zeros_like(input1))
self.assertEqual(input2.grad, input1 * 1e8)

# Check error when inputs are not the same shape
input1 = torch.randn(2, 2, 1)
input2 = torch.randn(2, 1, 3)
with self.assertRaises(RuntimeError):
F.cosine_similarity(input1, input2)

# Check type promotion, issue #61454
input = torch.tensor(12.)
out = F.cosine_similarity(input.to(torch.int8), input, dim=-1)
Expand Down
14 changes: 6 additions & 8 deletions torch/nn/functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -4256,7 +4256,10 @@ def pairwise_distance(x1: Tensor, x2: Tensor, p: float = 2.0, eps: float = 1e-6,
r"""
cosine_similarity(x1, x2, dim=1, eps=1e-8) -> Tensor
Returns cosine similarity between x1 and x2, computed along dim.
Returns cosine similarity between ``x1`` and ``x2``, computed along dim. ``x1`` and ``x2`` must be broadcastable
to a common shape. ``dim`` refers to the dimension in this common shape. Dimension ``dim`` of the output is
squeezed (see :func:`torch.squeeze`), resulting in the
output tensor having 1 fewer dimension.
.. math ::
\text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}
Expand All @@ -4265,16 +4268,11 @@ def pairwise_distance(x1: Tensor, x2: Tensor, p: float = 2.0, eps: float = 1e-6,
Args:
x1 (Tensor): First input.
x2 (Tensor): Second input (with the same number of dimensions as x1, matching x1 size at dimension `dim`,
and broadcastable with x1 at other dimensions).
dim (int, optional): Dimension of vectors. Default: 1
x2 (Tensor): Second input.
dim (int, optional): Dimension along which cosine similarity is computed. Default: 1
eps (float, optional): Small value to avoid division by zero.
Default: 1e-8
Shape:
- Input: :math:`(\ast_1, D, \ast_2)` where D is at position `dim`.
- Output: :math:`(\ast_1, \ast_2)`
Example::
>>> input1 = torch.randn(100, 128)
Expand Down
2 changes: 2 additions & 0 deletions torch/testing/_internal/common_methods_invocations.py
Original file line number Diff line number Diff line change
Expand Up @@ -1256,6 +1256,8 @@ def generator():
yield SampleInput(make_arg(input_shape), args=(make_arg(input_shape),), kwargs=kwargs)
# Test for Broadcasting
yield SampleInput(make_arg((1, 2, 3)), args=(make_arg((2, 1, 3)),), kwargs={'dim': -1})
yield SampleInput(make_arg((1, 2, 3)), args=(make_arg((2, 1, 3)),), kwargs={'dim': -2})
yield SampleInput(make_arg((2, 3)), args=(make_arg((2, 1, 3)),), kwargs={'dim': -1})

return list(generator())

Expand Down

0 comments on commit 9509e8a

Please sign in to comment.