Starred repositories
Tutorial Login - Python - Modern Layout
基于resnet的动物图像分类系统(python期末大作业)PyQt+Flask+HTML5+PyTorch
YoloSide - YOLOv8 GUI By PySide6
deep learning for image processing including classification and object-detection etc.
为GPT/GLM等LLM大语言模型提供实用化交互接口,特别优化论文阅读/润色/写作体验,模块化设计,支持自定义快捷按钮&函数插件,支持Python和C++等项目剖析&自译解功能,PDF/LaTex论文翻译&总结功能,支持并行问询多种LLM模型,支持chatglm3等本地模型。接入通义千问, deepseekcoder, 讯飞星火, 文心一言, llama2, rwkv, claude2, m…
PyTorch入门教程,在线阅读地址:https://datawhalechina.github.io/thorough-pytorch/
Inspired by the convolutional recurrent neural network(CRNN) and inception, we propose a multiscale time-frequency convolutional recurrent neural network (MTF-CRNN) for audio event detection. Our g…
The implementation of various lightweight networks by using PyTorch. such as:MobileNetV2,MobileNeXt,GhostNet,ParNet,MobileViT、AdderNet,ShuffleNetV1-V2,LCNet,ConvNeXt,etc. ⭐⭐⭐⭐⭐
Implementing Searching for MobileNetV3 paper using Pytorch
MobileNetV3-SSD for object detection and implementation in PyTorch
MobileNetV3 in pytorch and ImageNet pretrained models
MobileNetV2-YoloV3-Nano: 0.5BFlops 3MB HUAWEI P40: 6ms/img, YoloFace-500k:0.1Bflops 420KB:fire::fire::fire:
74.3% MobileNetV3-Large and 67.2% MobileNetV3-Small model on ImageNet
mobilenetv3 with pytorch,provide pre-train model
一种轻量化故障诊断框架——LiConvFormer
《李宏毅深度学习教程》(李宏毅老师推荐👍,苹果书🍎),PDF下载地址:https://github.com/datawhalechina/leedl-tutorial/releases
HazeDT / DL-based-Intelligent-Diagnosis-Benchmark
Forked from ZhaoZhibin/DL-based-Intelligent-Diagnosis-BenchmarkSource codes for the paper "Deep Learning Algorithms for Rotating Machinery Intelligent Diagnosis: An Open Source Benchmark Study"
this code library is mainly about applying graph neural networks to intelligent diagnostic and prognostic.
This code is about the implementation of Domain Adversarial Graph Convolutional Network for Fault Diagnosis Under Variable Working Conditions.
HazeDT / pytorch-handbook
Forked from zergtant/pytorch-handbookpytorch handbook是一本开源的书籍,目标是帮助那些希望和使用PyTorch进行深度学习开发和研究的朋友快速入门,其中包含的Pytorch教程全部通过测试保证可以成功运行
Open rotating mechanical fault datasets (开源旋转机械故障数据集整理)
Fault Diagnosis Employing Transfer Learning Techniques: Domain Adaptation and Domain Generalization