forked from meituan/YOLOv6
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request meituan#488 from lippman1125/main
1. fix bug of qat
- Loading branch information
Showing
8 changed files
with
401 additions
and
9 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
# YOLOv6t model | ||
model = dict( | ||
type='YOLOv6t', | ||
pretrained=None, | ||
depth_multiple=0.33, | ||
width_multiple=0.375, | ||
backbone=dict( | ||
type='EfficientRep', | ||
num_repeats=[1, 6, 12, 18, 6], | ||
out_channels=[64, 128, 256, 512, 1024], | ||
), | ||
neck=dict( | ||
type='RepPANNeck', | ||
num_repeats=[12, 12, 12, 12], | ||
out_channels=[256, 128, 128, 256, 256, 512], | ||
), | ||
head=dict( | ||
type='EffiDeHead', | ||
in_channels=[128, 256, 512], | ||
num_layers=3, | ||
begin_indices=24, | ||
anchors=1, | ||
out_indices=[17, 20, 23], | ||
strides=[8, 16, 32], | ||
iou_type='siou', | ||
use_dfl=False, | ||
reg_max=0 #if use_dfl is False, please set reg_max to 0 | ||
) | ||
) | ||
|
||
solver = dict( | ||
optim='SGD', | ||
lr_scheduler='Cosine', | ||
lr0=0.01, | ||
lrf=0.01, | ||
momentum=0.937, | ||
weight_decay=0.0005, | ||
warmup_epochs=3.0, | ||
warmup_momentum=0.8, | ||
warmup_bias_lr=0.1 | ||
) | ||
|
||
data_aug = dict( | ||
hsv_h=0.015, | ||
hsv_s=0.7, | ||
hsv_v=0.4, | ||
degrees=0.0, | ||
translate=0.1, | ||
scale=0.5, | ||
shear=0.0, | ||
flipud=0.0, | ||
fliplr=0.5, | ||
mosaic=1.0, | ||
mixup=0.0, | ||
) | ||
|
||
# Choose Rep-block by the training Mode, choices=["repvgg", "hyper-search", "repopt"] | ||
training_mode='hyper_search' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
# YOLOv6t model | ||
model = dict( | ||
type='YOLOv6t', | ||
pretrained=None, | ||
scales='../yolov6_assert/v6t_v2_scale_last.pt', | ||
depth_multiple=0.33, | ||
width_multiple=0.375, | ||
backbone=dict( | ||
type='EfficientRep', | ||
num_repeats=[1, 6, 12, 18, 6], | ||
out_channels=[64, 128, 256, 512, 1024], | ||
), | ||
neck=dict( | ||
type='RepPANNeck', | ||
num_repeats=[12, 12, 12, 12], | ||
out_channels=[256, 128, 128, 256, 256, 512], | ||
), | ||
head=dict( | ||
type='EffiDeHead', | ||
in_channels=[128, 256, 512], | ||
num_layers=3, | ||
begin_indices=24, | ||
anchors=1, | ||
out_indices=[17, 20, 23], | ||
strides=[8, 16, 32], | ||
iou_type='siou', | ||
use_dfl=False, | ||
reg_max=0 #if use_dfl is False, please set reg_max to 0 | ||
) | ||
) | ||
|
||
solver = dict( | ||
optim='SGD', | ||
lr_scheduler='Cosine', | ||
lr0=0.01, | ||
lrf=0.01, | ||
momentum=0.937, | ||
weight_decay=0.0005, | ||
warmup_epochs=3.0, | ||
warmup_momentum=0.8, | ||
warmup_bias_lr=0.1 | ||
) | ||
|
||
data_aug = dict( | ||
hsv_h=0.015, | ||
hsv_s=0.7, | ||
hsv_v=0.4, | ||
degrees=0.0, | ||
translate=0.1, | ||
scale=0.5, | ||
shear=0.0, | ||
flipud=0.0, | ||
fliplr=0.5, | ||
mosaic=1.0, | ||
mixup=0.0, | ||
) | ||
# Choose Rep-block by the training Mode, choices=["repvgg", "hyper-search", "repopt"] | ||
training_mode='repopt' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
# YOLOv6t model | ||
model = dict( | ||
type='YOLOv6t', | ||
pretrained='./assets/v6s_t.pt', | ||
scales='./assets/v6t_v2_scale_last.pt', | ||
depth_multiple=0.33, | ||
width_multiple=0.375, | ||
backbone=dict( | ||
type='EfficientRep', | ||
num_repeats=[1, 6, 12, 18, 6], | ||
out_channels=[64, 128, 256, 512, 1024], | ||
), | ||
neck=dict( | ||
type='RepPANNeck', | ||
num_repeats=[12, 12, 12, 12], | ||
out_channels=[256, 128, 128, 256, 256, 512], | ||
), | ||
head=dict( | ||
type='EffiDeHead', | ||
in_channels=[128, 256, 512], | ||
num_layers=3, | ||
begin_indices=24, | ||
anchors=1, | ||
out_indices=[17, 20, 23], | ||
strides=[8, 16, 32], | ||
iou_type='siou', | ||
use_dfl=False, | ||
reg_max=0, #if use_dfl is False, please set reg_max to 0 | ||
distill_weight={ | ||
'class': 1.0, | ||
'dfl': 1.0, | ||
}, | ||
) | ||
) | ||
|
||
solver = dict( | ||
optim='SGD', | ||
lr_scheduler='Cosine', | ||
lr0=0.00001, | ||
lrf=0.001, | ||
momentum=0.937, | ||
weight_decay=0.00005, | ||
warmup_epochs=3.0, | ||
warmup_momentum=0.8, | ||
warmup_bias_lr=0.1 | ||
) | ||
|
||
data_aug = dict( | ||
hsv_h=0.015, | ||
hsv_s=0.7, | ||
hsv_v=0.4, | ||
degrees=0.0, | ||
translate=0.1, | ||
scale=0.5, | ||
shear=0.0, | ||
flipud=0.0, | ||
fliplr=0.5, | ||
mosaic=1.0, | ||
mixup=0.0, | ||
) | ||
|
||
ptq = dict( | ||
num_bits = 8, | ||
calib_batches = 4, | ||
# 'max', 'histogram' | ||
calib_method = 'histogram', | ||
# 'entropy', 'percentile', 'mse' | ||
histogram_amax_method='entropy', | ||
histogram_amax_percentile=99.99, | ||
calib_output_path='./', | ||
sensitive_layers_skip=False, | ||
sensitive_layers_list=[], | ||
) | ||
|
||
qat = dict( | ||
calib_pt = './assets/v6s_t_calib_histogram.pt', | ||
sensitive_layers_skip = False, | ||
sensitive_layers_list=[], | ||
) | ||
|
||
# Choose Rep-block by the training Mode, choices=["repvgg", "hyper-search", "repopt"] | ||
training_mode='repopt' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
# YOLOv6n model | ||
model = dict( | ||
type='YOLOv6n', | ||
pretrained=None, | ||
depth_multiple=0.33, | ||
width_multiple=0.25, | ||
backbone=dict( | ||
type='EfficientRep', | ||
num_repeats=[1, 6, 12, 18, 6], | ||
out_channels=[64, 128, 256, 512, 1024], | ||
), | ||
neck=dict( | ||
type='RepPANNeck', | ||
num_repeats=[12, 12, 12, 12], | ||
out_channels=[256, 128, 128, 256, 256, 512], | ||
), | ||
head=dict( | ||
type='EffiDeHead', | ||
in_channels=[128, 256, 512], | ||
num_layers=3, | ||
begin_indices=24, | ||
anchors=1, | ||
out_indices=[17, 20, 23], | ||
strides=[8, 16, 32], | ||
iou_type='siou', | ||
use_dfl=False, | ||
reg_max=0 #if use_dfl is False, please set reg_max to 0 | ||
) | ||
) | ||
|
||
solver = dict( | ||
optim='SGD', | ||
lr_scheduler='Cosine', | ||
lr0=0.02, #0.01 # 0.02 | ||
lrf=0.01, | ||
momentum=0.937, | ||
weight_decay=0.0005, | ||
warmup_epochs=3.0, | ||
warmup_momentum=0.8, | ||
warmup_bias_lr=0.1 | ||
) | ||
|
||
data_aug = dict( | ||
hsv_h=0.015, | ||
hsv_s=0.7, | ||
hsv_v=0.4, | ||
degrees=0.0, | ||
translate=0.1, | ||
scale=0.5, | ||
shear=0.0, | ||
flipud=0.0, | ||
fliplr=0.5, | ||
mosaic=1.0, | ||
mixup=0.0, | ||
) | ||
|
||
# Choose Rep-block by the training Mode, choices=["repvgg", "hyper-search", "repopt"] | ||
training_mode='hyper_search' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
# YOLOv6n model | ||
model = dict( | ||
type='YOLOv6n', | ||
pretrained=None, | ||
scales='../yolov6_assert/v6n_v2_scale_last.pt', | ||
depth_multiple=0.33, | ||
width_multiple=0.25, | ||
backbone=dict( | ||
type='EfficientRep', | ||
num_repeats=[1, 6, 12, 18, 6], | ||
out_channels=[64, 128, 256, 512, 1024], | ||
), | ||
neck=dict( | ||
type='RepPANNeck', | ||
num_repeats=[12, 12, 12, 12], | ||
out_channels=[256, 128, 128, 256, 256, 512], | ||
), | ||
head=dict( | ||
type='EffiDeHead', | ||
in_channels=[128, 256, 512], | ||
num_layers=3, | ||
begin_indices=24, | ||
anchors=1, | ||
out_indices=[17, 20, 23], | ||
strides=[8, 16, 32], | ||
iou_type='siou', | ||
use_dfl=False, | ||
reg_max=0 #if use_dfl is False, please set reg_max to 0 | ||
) | ||
) | ||
|
||
solver = dict( | ||
optim='SGD', | ||
lr_scheduler='Cosine', | ||
lr0=0.02, #0.01 # 0.02 | ||
lrf=0.01, | ||
momentum=0.937, | ||
weight_decay=0.0005, | ||
warmup_epochs=3.0, | ||
warmup_momentum=0.8, | ||
warmup_bias_lr=0.1 | ||
) | ||
|
||
data_aug = dict( | ||
hsv_h=0.015, | ||
hsv_s=0.7, | ||
hsv_v=0.4, | ||
degrees=0.0, | ||
translate=0.1, | ||
scale=0.5, | ||
shear=0.0, | ||
flipud=0.0, | ||
fliplr=0.5, | ||
mosaic=1.0, | ||
mixup=0.0, | ||
) | ||
# Choose Rep-block by the training Mode, choices=["repvgg", "hyper-search", "repopt"] | ||
training_mode='repopt' |
Oops, something went wrong.