Skip to content

ZhaoyiLi-HekJukZaaiZyuJan/SpinModelSim

Repository files navigation

Monte Carlo Simulation of 2D Random Bond Ising Model

Originally Created 3/12/2022 Zhaoyi Li

Technical Details

Hamiltonian: The Hamiltonian is given by $H=J_{ij}\sum_{<i,j>}\sigma_i\sigma_j$, where each spin $\sigma_i$ takes on the value ${-1,1}.$

Assuming constant coupling

$$J_{ij}=J$$

In this case, the thermodynamic variablesare given by: $$\chi\sim\Delta M, C\sim\Delta E$$ Want to compute $\langle E\rangle$, $\langle E^2\rangle$, $\langle M\rangle$, $\langle M^2\rangle$ with thermodynamic average: $$\langle X\rangle = \frac{1}{Z}\sum_{{\sigma}}X({\sigma})e^{-\beta H({\sigma})}$$

Adding randomness in $J_{\langle ij\rangle}$

$$P[J_{ij}] = (1-p)\delta(J_{ij}-J)+p\delta(J_{ij}+J)$$

Here $\langle X\rangle = \mathbb{E}[\frac{1}{Z}\sum_{{\sigma}}X({\sigma})e^{-\beta H({\sigma})}]$ Phase.png

Background

$\cdot$ spin glass
1920px-Silica.svg.png $\cdot$ quantum error correction

The-vertex-Av-and-plaquette-Bp-operators-of-the-toric-code-as-defined-in-2-Edges.png Data-obtained-from-numerical-simulations-of-the-toric-code-failure-rate-close-to.png

Methodology

Metropolis algorithm:

$$w(a\leftarrow b) = \min{(1,e^{\beta(E_a-E_b)})}$$ therefore satisfying the condition: $$\frac{w(a\leftarrow b)}{w(b\leftarrow a)}=\frac{e^{-\beta E_a}}{e^{-\beta E_b}}$$

Variables

This program accepts command-line arguments, which can be used to customize its behavior. The available options for each subprogram are listed in the following table, along with any options that are not available. Hover your mouse over to see more details.

Option Description Type Default Value
-f, --fname Output filename, the default file name is in the ../data/ folder string N/A
--out output in this directory as an .out file bool 0
--waitSweep number of sweeps to wit before sampling int 10
--rptSweep number of sweeps sampled int 10000
-n Size of Lattice int 3
-J interaction strength float between 0-1 0
-p randomness float between 0-1 0
--tmin minimal temperature float 0.1
--tmax maximal temperature float 2.1
--nt number of bins (data points -1) nt 10

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published