Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
zkkli committed Oct 9, 2023
1 parent 7419886 commit cf17c91
Showing 1 changed file with 12 additions and 1 deletion.
13 changes: 12 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -164,7 +164,8 @@ If you find this repo useful, please consider **★STARing** and feel free to sh
- "BiPointNet: Binary Neural Network for Point Clouds", ICLR, 2021. [[paper](https://openreview.net/forum?id=9QLRCVysdlO)] [[code](https://github.com/htqin/BiPointNet)] [**`Extreme`**]

#### Visual Generation
- "Q-diffusion: Quantizing Diffusion Models", ICCV, 2023. [[paper](https://arxiv.org/abs/2302.04304)] [[code](https://github.com/Xiuyu-Li/q-diffusion)] [**`PTQ`**]
- "EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models", arXiv, 2023. [[paper](http://arxiv.org/abs/2310.03270)]
- "Q-diffusion: Quantizing Diffusion Models", ICCV, 2023. [[paper](https://openaccess.thecvf.com/content/ICCV2023/papers/Li_Q-Diffusion_Quantizing_Diffusion_Models_ICCV_2023_paper.pdf)] [[code](https://github.com/Xiuyu-Li/q-diffusion)] [**`PTQ`**]
- "Temporal Dynamic Quantization for Diffusion Models", arXiv, 2023. [[paper](http://arxiv.org/abs/2306.02316)]
- "Towards Accurate Data-free Quantization for Diffusion Models", arXiv, 2023. [[paper](http://arxiv.org/abs/2305.18723)] [**`PTQ`**]
- "Post-training Quantization on Diffusion Models", CVPR, 2023. [[paper](http://openaccess.thecvf.com/content/CVPR2023/html/Shang_Post-Training_Quantization_on_Diffusion_Models_CVPR_2023_paper.html)] [[code](https://https//github.com/42Shawn/PTQ4DM)] [**`PTQ`**]
Expand Down Expand Up @@ -198,6 +199,16 @@ If you find this repo useful, please consider **★STARing** and feel free to sh

### Language Transformers
- "SqueezeLLM: Dense-and-Sparse Quantization", arXiv, 2023. [[paper](https://arxiv.org/abs/2306.07629)] [**`PTQ`**] [**`Non-uniform`**]
- "Rethinking Channel Dimensions to Isolate Outliers for Low-bit Weight Quantization of Large Language Models", arXiv, 2023. [[paper](http://arxiv.org/abs/2309.15531)]
- "QA-LoRA: Quantization-Aware Low-Rank Adaptation of Large Language Models", arXiv, 2023. [[paper](http://arxiv.org/abs/2309.14717)]
- "Efficient Post-training Quantization with FP8 Formats", arXiv, 2023. [[paper](http://arxiv.org/abs/2309.14592)]
- "Probabilistic Weight Fixing: Large-scale training of neural network weight uncertainties for quantization", arXiv, 2023. [[paper](http://arxiv.org/abs/2309.13575)]
- "Optimize Weight Rounding via Signed Gradient Descent for the Quantization of LLMs", arXiv, 2023. [[paper](http://arxiv.org/abs/2309.05516)]
- "Norm Tweaking: High-performance Low-bit Quantization of Large Language Models", arXiv, 2023. [[paper](http://arxiv.org/abs/2309.02784)]
- "Understanding the Impact of Post-Training Quantization on Large Language Models", arXiv, 2023. [[paper](http://arxiv.org/abs/2309.05210)]
- "QuantEase: Optimization-based Quantization for Language Models -- An Efficient and Intuitive Algorithm", arXiv, 2023. [[paper](http://arxiv.org/abs/2309.01885)]
- "FPTQ: Fine-grained Post-Training Quantization for Large Language Models", arXiv, 2023. [[paper](http://arxiv.org/abs/2308.15987)]
- "OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models", arXiv, 2023. [[paper](http://arxiv.org/abs/2308.13137)]
- "FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only Quantization for LLMs", arXiv, 2023. [[paper](http://arxiv.org/abs/2308.09723)] [**`PTQ`**]
- "Gradient-Based Post-Training Quantization: Challenging the Status Quo", arXiv, 2023. [[paper](http://arxiv.org/abs/2308.07662)] [**`PTQ`**]
- "NUPES : Non-Uniform Post-Training Quantization via Power Exponent Search", arXiv, 2023. [[paper](http://arxiv.org/abs/2308.05600)] [**`Non-uniform`**]
Expand Down

0 comments on commit cf17c91

Please sign in to comment.