forked from meituan/YOLOv6
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Support OpenCV depolyment with Python/C++
- Loading branch information
Showing
14 changed files
with
1,229 additions
and
0 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
# Object Detection using YOLOv5/YOLOv6/YOLOX and OpenCV DNN (Python/C++) | ||
|
||
## 0. Install Dependancies | ||
``` | ||
OpenCV >= 4.5.4 | ||
``` | ||
Only **OpenCV >= 4.5.4** can read onnx model file by dnn module. | ||
|
||
## 1. Usage | ||
### 1.1 Python | ||
|
||
- YOLOv5&YOLOv6: | ||
```Python | ||
python yolo.py --model /path/to/onnx/yolov5n.onnx --img /path/to/sample.jpg --classesFile /path/to/coco.names | ||
yolov5s.onnx | ||
yolov5m.onnx | ||
yolov6n.onnx | ||
yolov6s.onnx | ||
yolov6t.onnx | ||
``` | ||
- YOLOX: | ||
```Python | ||
python yolox.py --model /path/to/onnx/yolox_nano.onnx --img /path/to/sample.jpg --classesFile /path/to/coco.names | ||
yolox_tiny.onnx | ||
yolox_s.onnx | ||
yolox_m.onnx | ||
``` | ||
|
||
### 1.2 CMake C++ Linux YOLOv5 | ||
```C++ Linux | ||
cd yolov5 // modify CMakeLists.txt | ||
mkdir build | ||
cd build | ||
cmake .. | ||
make | ||
./yolov5 /path/to/onnx/yolov5n.onnx /path/to/sample.jpg /path/to/coco.names | ||
yolov5s.onnx | ||
yolov5m.onnx | ||
``` | ||
|
||
### 1.3 CMake C++ Linux YOLOv6 | ||
```C++ Linux | ||
cd yolov6 // modify CMakeLists.txt | ||
mkdir build | ||
cd build | ||
cmake .. | ||
make | ||
./yolov6 /path/to/onnx/yolov6n.onnx /path/to/sample.jpg /path/to/coco.names | ||
yolov6t.onnx | ||
yolov6s.onnx | ||
``` | ||
|
||
### 1.4 CMake C++ Linux YOLOX | ||
```C++ Linux | ||
cd yolox // modify CMakeLists.txt | ||
mkdir build | ||
cd build | ||
cmake .. | ||
make | ||
./yolox /path/to/onnx/yolox_nano.onnx /path/to/sample.jpg /path/to/coco.names | ||
yolox_tiny.onnx | ||
yolox_s.onnx | ||
yolox_m.onnx | ||
``` | ||
|
||
## 2. Result | ||
| Model | Speed CPU b1(ms) Python | Speed CPU b1(ms) C++ | mAP<sup>val 0.5:0.95</sup> | params(M) | FLOPS(G) | | ||
| :-- | :-: | :-: | :-: | :-: | :-: | | ||
| **YOLOv5n** | 116.47 | 118.89 | 28.0 | 1.9 | 4.5 | | ||
| **YOLOv5s** | 200.53 | 202.22 | 37.4 | 7.2 | 16.5 | | ||
| **YOLOv5m** | 294.98 | 291.86 | 45.4 | 21.2 | 49.0 | | ||
| | | | | | | | ||
| **YOLOv6-n** | 66.88 | 69.96 | 35.0 | 4.3 | 4.7 | | ||
| **YOLOv6-tiny** | 133.15 | 137.59 | 41.3 | 15.0 | 36.7 | | ||
| **YOLOv6-s** | 164.44 | 163.38 | 43.1 | 17.2 | 44.2 | | ||
| | | | | | | | ||
| **YOLOX-Nano** | 81.06 | 86.75 | 25.8@416 | 0.91 | 1.08@416 | | ||
| **YOLOX-tiny** | 129.72 | 144.19 | 32.8@416 | 5.06 | 6.45@416 | | ||
| **YOLOX-s** | 180.86 | 169.96 | 40.5 | 9.0 | 26.8 | | ||
| **YOLOX-m** | 336.34 | 357.91 | 47.2 | 25.3 | 73.8 | | ||
|
||
**Note**: | ||
- All onnx models are converted from official github([Google Drive](https://drive.google.com/drive/folders/1Nw6M_Y6XLASyB0RxhSI2z_QRtt70Picl?usp=sharing)). | ||
- For speed, we report the average inference time of 300 runs on the same environment. | ||
- Test environment: MacOS 11.4 with 2.6 GHz 6-core Intel Core i7, 16GB Memory. | ||
|
||
### Visualization | ||
<div align="left"> <img src="../../../assets/yolov5s.jpg" width="1000"></div> | ||
<div align="left"> <img src="../../../assets/yolov6s.jpg" width="1000"></div> | ||
<div align="left"> <img src="../../../assets/yoloxs.jpg" width="1000"></div> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
person | ||
bicycle | ||
car | ||
motorbike | ||
aeroplane | ||
bus | ||
train | ||
truck | ||
boat | ||
traffic light | ||
fire hydrant | ||
stop sign | ||
parking meter | ||
bench | ||
bird | ||
cat | ||
dog | ||
horse | ||
sheep | ||
cow | ||
elephant | ||
bear | ||
zebra | ||
giraffe | ||
backpack | ||
umbrella | ||
handbag | ||
tie | ||
suitcase | ||
frisbee | ||
skis | ||
snowboard | ||
sports ball | ||
kite | ||
baseball bat | ||
baseball glove | ||
skateboard | ||
surfboard | ||
tennis racket | ||
bottle | ||
wine glass | ||
cup | ||
fork | ||
knife | ||
spoon | ||
bowl | ||
banana | ||
apple | ||
sandwich | ||
orange | ||
broccoli | ||
carrot | ||
hot dog | ||
pizza | ||
donut | ||
cake | ||
chair | ||
sofa | ||
pottedplant | ||
bed | ||
diningtable | ||
toilet | ||
tvmonitor | ||
laptop | ||
mouse | ||
remote | ||
keyboard | ||
cell phone | ||
microwave | ||
oven | ||
toaster | ||
sink | ||
refrigerator | ||
book | ||
clock | ||
vase | ||
scissors | ||
teddy bear | ||
hair drier | ||
toothbrush |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
import cv2 | ||
import numpy as np | ||
import os | ||
import argparse | ||
|
||
|
||
# Constants. | ||
INPUT_WIDTH = 640 | ||
INPUT_HEIGHT = 640 | ||
SCORE_THRESHOLD = 0.5 # cls score | ||
NMS_THRESHOLD = 0.45 | ||
CONFIDENCE_THRESHOLD = 0.45 # obj confidence | ||
|
||
# Text parameters. | ||
FONT_FACE = cv2.FONT_HERSHEY_SIMPLEX | ||
FONT_SCALE = 0.7 | ||
THICKNESS = 1 | ||
|
||
# Colors | ||
BLACK = (0,0,0) | ||
BLUE = (255,178,50) | ||
YELLOW = (0,255,255) | ||
RED = (0,0,255) | ||
|
||
|
||
def draw_label(input_image, label, left, top): | ||
"""Draw text onto image at location.""" | ||
|
||
# Get text size. | ||
text_size = cv2.getTextSize(label, FONT_FACE, FONT_SCALE, THICKNESS) | ||
dim, baseline = text_size[0], text_size[1] | ||
# Use text size to create a BLACK rectangle. | ||
cv2.rectangle(input_image, (left, top), (left + dim[0], top + dim[1] + baseline), BLACK, cv2.FILLED) | ||
# Display text inside the rectangle. | ||
cv2.putText(input_image, label, (left, top + dim[1]), FONT_FACE, FONT_SCALE, YELLOW, THICKNESS, cv2.LINE_AA) | ||
|
||
|
||
def pre_process(input_image, net): | ||
# Create a 4D blob from a frame. | ||
blob = cv2.dnn.blobFromImage(input_image, 1/255, (INPUT_WIDTH, INPUT_HEIGHT), [0,0,0], 1, crop=False) | ||
|
||
# Sets the input to the network. | ||
net.setInput(blob) | ||
|
||
# Runs the forward pass to get output of the output layers. | ||
output_layers = net.getUnconnectedOutLayersNames() | ||
outputs = net.forward(output_layers) | ||
# print(outputs[0].shape) | ||
|
||
return outputs | ||
|
||
|
||
def post_process(input_image, outputs): | ||
# Lists to hold respective values while unwrapping. | ||
class_ids = [] | ||
confidences = [] | ||
boxes = [] | ||
|
||
# Rows. | ||
rows = outputs[0].shape[1] | ||
|
||
image_height, image_width = input_image.shape[:2] | ||
|
||
# Resizing factor. | ||
x_factor = image_width / INPUT_WIDTH | ||
y_factor = image_height / INPUT_HEIGHT | ||
|
||
# Iterate through 25200 detections. | ||
for r in range(rows): | ||
row = outputs[0][0][r] | ||
confidence = row[4] | ||
|
||
# Discard bad detections and continue. | ||
if confidence >= CONFIDENCE_THRESHOLD: | ||
classes_scores = row[5:] | ||
|
||
# Get the index of max class score. | ||
class_id = np.argmax(classes_scores) | ||
|
||
# Continue if the class score is above threshold. | ||
if (classes_scores[class_id] > SCORE_THRESHOLD): | ||
confidences.append(confidence) | ||
class_ids.append(class_id) | ||
|
||
cx, cy, w, h = row[0], row[1], row[2], row[3] | ||
|
||
left = int((cx - w/2) * x_factor) | ||
top = int((cy - h/2) * y_factor) | ||
width = int(w * x_factor) | ||
height = int(h * y_factor) | ||
|
||
box = np.array([left, top, width, height]) | ||
boxes.append(box) | ||
|
||
# Perform non maximum suppression to eliminate redundant overlapping boxes with | ||
# lower confidences. | ||
indices = cv2.dnn.NMSBoxes(boxes, confidences, CONFIDENCE_THRESHOLD, NMS_THRESHOLD) | ||
for i in indices: | ||
box = boxes[i] | ||
left = box[0] | ||
top = box[1] | ||
width = box[2] | ||
height = box[3] | ||
cv2.rectangle(input_image, (left, top), (left + width, top + height), BLUE, 3*THICKNESS) | ||
label = "{}:{:.2f}".format(classes[class_ids[i]], confidences[i]) | ||
draw_label(input_image, label, left, top) | ||
|
||
return input_image | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--model', default='models/yolov6n.onnx', help="Input your onnx model.") | ||
parser.add_argument('--img', default='sample.jpg', help="Path to your input image.") | ||
parser.add_argument('--classesFile', default='coco.names', help="Path to your classesFile.") | ||
args = parser.parse_args() | ||
|
||
# Load class names. | ||
model_path, img_path, classesFile = args.model, args.img, args.classesFile | ||
window_name = os.path.splitext(os.path.basename(model_path))[0] | ||
classes = None | ||
with open(classesFile, 'rt') as f: | ||
classes = f.read().rstrip('\n').split('\n') | ||
|
||
# Load image. | ||
frame = cv2.imread(img_path) | ||
input = frame.copy() | ||
|
||
# Give the weight files to the model and load the network using them. | ||
net = cv2.dnn.readNet(model_path) | ||
|
||
# Put efficiency information. The function getPerfProfile returns the overall time for inference(t) and the | ||
# timings for each of the layers(in layersTimes) | ||
# Process image. | ||
cycles = 300 | ||
total_time = 0 | ||
for i in range(cycles): | ||
detections = pre_process(input.copy(), net) | ||
img = post_process(frame.copy(), detections) | ||
t, _ = net.getPerfProfile() | ||
total_time += t | ||
print(f'Cycle [{i + 1}]:\t{t * 1000.0 / cv2.getTickFrequency():.2f}\tms') | ||
|
||
avg_time = total_time / cycles | ||
label = 'Average Inference time: %.2f ms' % (avg_time * 1000.0 / cv2.getTickFrequency()) | ||
print(f'Model: {window_name}\n{label}') | ||
cv2.putText(img, label, (20, 40), FONT_FACE, FONT_SCALE, RED, THICKNESS, cv2.LINE_AA) | ||
cv2.imshow(window_name, img) | ||
cv2.waitKey(0) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
# CMakeLists.txt | ||
|
||
# Older versions of CMake are likely to work just fine but, since | ||
# I don't know where to cut off I just use the version I'm using | ||
cmake_minimum_required(VERSION "3.17") | ||
|
||
# name of this example project | ||
project(simple-demo) | ||
|
||
# set OpenCV_DIR variable equal to the path to the cmake | ||
# files within the previously installed opencv program | ||
# path like /xxx/yyy/opencv/install/lib/cmake/opencv4 | ||
set(OpenCV_DIR ${OpenCV_DIR}) | ||
|
||
# Tell compiler to use C++ 14 features which is needed because | ||
# Clang version is often behind in the XCode installation | ||
set(CMAKE_CXX_STANDARD 14) | ||
|
||
# configure the necessary common CMake environment variables | ||
# needed to include and link the OpenCV program into this | ||
# demo project, namely OpenCV_INCLUDE_DIRS and OpenCV_LIBS | ||
find_package( OpenCV REQUIRED ) | ||
|
||
# tell the build to include the headers from OpenCV | ||
include_directories( ${OpenCV_INCLUDE_DIRS} ) | ||
|
||
# specify the executable target to be built | ||
# path like /xxx/yyy/opencv/install/include | ||
add_executable(yolov5 yolov5.cpp) | ||
|
||
# tell it to link the executable target against OpenCV | ||
# path like /xxx/yyy/opencv/install/lib | ||
target_link_libraries(yolov5 ${OpenCV_LIBS} ) |
Oops, something went wrong.