gymnasium==0.29.1
https://www.zhihu.com/people/zoujiu1
difference: self.epsilon = self.epsilon * 0.996 if self.epsilon > 0.0001 else 0.0001
, network with numpy
and so on.
run
python ./numpy_RL_reinforcement_learning/chapter7_DQN.py
python ./chapter7.py
run
python ./numpy_RL_reinforcement_learning/chapter8.py
python ./chapter8.py
https://zhuanlan.zhihu.com/p/656835865 动手学强化学习reinforcement learning-chapter-nine-策略梯度算法,阅读的笔记
difference: self.epsilon = self.epsilon * 0.996 if self.epsilon > 0.0001 else 0.0001
, network with numpy
and so on.
run
python ./numpy_RL_reinforcement_learning/chapter9_策略梯度算法.py
python ./chapter9.py
run
python ./numpy_RL_reinforcement_learning/chapter10_Actor-Critic算法.py
python ./chapter10.py
run
python ./numpy_RL_reinforcement_learning/chapter12.py
python ./chapter12.py
https://zhuanlan.zhihu.com/p/658460643 动手学强化学习reinforcement learning-chapter-thirteen-DDPG 算法,阅读的笔记
run
python ./numpy_RL_reinforcement_learning/chapter13.py
python ./chapter13.py
run
python ./numpy_RL_reinforcement_learning/chapter15.py
python ./chapter15.py
https://zhuanlan.zhihu.com/p/658777952? 动手学强化学习reinforcement learning-chapter-sixteen-模型预测控制
https://zhuanlan.zhihu.com/p/658972982? 动手学强化学习reinforcement learning-chapter-seventeen-基于模型的策略优化
https://zhuanlan.zhihu.com/p/659029814 动手学强化学习reinforcement learning-chapter-eighteen-离线强化学习
https://zhuanlan.zhihu.com/p/659106430 动手学强化学习reinforcement learning-chapter-nineteen-目标导向的强化学习
run
python ./numpy_RL_reinforcement_learning/chapter19.py
python ./chapter19.py
https://zhuanlan.zhihu.com/p/659106430 动手学强化学习reinforcement learning-chapter-nineteen-目标导向的强化学习
run
python ./numpy_RL_reinforcement_learning/chapter20.py
python ./chapter20.py
https://zhuanlan.zhihu.com/p/659244178 动手学强化学习reinforcement learning-chapter-twenty-one-多智能体强化学习进阶
-------------------------------------original readme---------------------------------
-------------------------------------original readme---------------------------------
-------------------------------------original readme---------------------------------
Tips: 若运行gym环境的代码时遇到报错,请尝试pip install gym==0.18.3安装此版本的gym库,若仍有问题,欢迎提交issue!
欢迎来到《动手学强化学习》(Hands-on Reinforcement Learning)的地带。该系列从强化学习的定义等基础讲起,一步步由浅入深,介绍目前一些主流的强化学习算法。每一章内容都是一个Jupyter Notebook,内含详细的图文介绍和代码讲解。
-
由于GitHub上渲染notebook效果有限,我们推荐读者前往Hands-on RL主页进行浏览,我们在此提供了纯代码版本的notebook,供大家下载运行。
-
如果你发现了本书的任何问题,或者有任何改善建议的,欢迎提交issue!
-
本书配套的强化学习课程已上线到伯禹学习平台,所有人都可以免费学习和讨论。