forked from mst272/LLM-Dojo
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
261 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,261 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"# 从0实现一个DPO" | ||
], | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"id": "fb69f628966bb719" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"## 1.准备数据" | ||
], | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"id": "8bbb0f857b2a051" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"DPO所需要的数据主要三个字段:\n", | ||
"- instruction:指令问题\n", | ||
"- chosen:选择的偏好回答\n", | ||
"- rejected: 不好的回答" | ||
], | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"id": "76726cb0c67792af" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"outputs": [], | ||
"source": [], | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"id": "691f55cb1faa5a5f" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"# 2、数据集处理" | ||
], | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"id": "f6eaa11e7c529604" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"了解DPO训练流程的可以知道,一般的DPO实现是需要将prompt(即instruction)分别和chsoen、rejected拼接在一起的。" | ||
], | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"id": "c4726f451d1b5a4" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"outputs": [], | ||
"source": [], | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"id": "4ce6798d1afd79ed" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"# LOSS " | ||
], | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"id": "9777171077888583" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"DPO主要是两个模型,policy model(即我们主要要调优的模型) 和 reference model(用来约束的模型)" | ||
], | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"id": "c97e1b5434c5aa01" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"outputs": [], | ||
"source": [ | ||
"import torch.nn.functional as F\n", | ||
"import torch.nn as nn\n", | ||
"import torch\n", | ||
"\n", | ||
"class DPOLoss(nn.Module):\n", | ||
" \"\"\"\n", | ||
" DPO Loss\n", | ||
" \"\"\"\n", | ||
"\n", | ||
" def __init__(self, beta: float=0.1) -> None:\n", | ||
" super().__init__()\n", | ||
" self.beta = beta\n", | ||
"\n", | ||
" def forward(\n", | ||
" self,\n", | ||
" policy_chosen_logps: torch.Tensor,\n", | ||
" policy_rejected_logps: torch.Tensor,\n", | ||
" reference_chosen_logps: torch.Tensor,\n", | ||
" reference_rejected_logps: torch.Tensor,\n", | ||
" ) :\n", | ||
" \"\"\"\n", | ||
" policy_chosen_logps: 模型输出的对数概率。Shape: (batch_size,)\n", | ||
" policy_rejected_logps: Shape: (batch_size,)\n", | ||
" reference_chosen_logps: Shape: (batch_size,)\n", | ||
" reference_rejected_logps: Shape: (batch_size,)\n", | ||
" \n", | ||
" \"\"\"\n", | ||
" policy_logps = policy_chosen_logps - policy_rejected_logps\n", | ||
" reference_logps = reference_chosen_logps - reference_rejected_logps\n", | ||
" logits = policy_logps - reference_logps\n", | ||
" \n", | ||
" loss = -F.logsigmoid(self.beta * logits)\n", | ||
" \n", | ||
" # 下面两个用于追踪训练的进度\n", | ||
" chosen_rewards = (policy_chosen_logps - reference_chosen_logps).detach()\n", | ||
" rejected_rewards = (policy_rejected_logps - reference_rejected_logps).detach()\n", | ||
" \n", | ||
" # 对每个batch进行平均\n", | ||
" return loss.mean(), chosen_rewards.mean(), rejected_rewards.mean()\n", | ||
"\n", | ||
" " | ||
], | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"id": "c245fc84671838dd" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"计算log probs ,也就是 $\\pi_\\theta (y_w \\mid x)$," | ||
], | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"id": "2b1be59f347b82bd" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"outputs": [], | ||
"source": [ | ||
"def compute_logprobs(logits, labels):\n", | ||
" \"\"\"\n", | ||
" logits: shape (batch_size, sequence_len, vocab_size)\n", | ||
" labels: shape (batch_size, sequence_len)\n", | ||
" \"\"\"\n", | ||
" \n", | ||
" # 需要先进行位移操作\n", | ||
" # 去掉标签的第一个\n", | ||
" labels = labels[:, 1:].clone()\n", | ||
" # 去掉模型输出的最后一个\n", | ||
" logits = logits[:,:-1,:]\n", | ||
" \n", | ||
" logps = F.log_softmax(logits, dim=-1)\n", | ||
" \n", | ||
" select_logprobs = torch.gather(\n", | ||
" input=logps,\n", | ||
" dim=1,\n", | ||
" index=labels.unsqueeze(1)\n", | ||
" ).squeeze(1)" | ||
], | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"id": "ca63797467a68c1e" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 19, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"tensor([[-0.4170],\n", | ||
" [-2.4200]]) torch.Size([2, 1])\n", | ||
"tensor([-0.4170, -2.4200]) torch.Size([2])\n", | ||
"tensor(1.4185) tensor(1.4185)\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"import torch.nn.functional as F\n", | ||
"import torch\n", | ||
"logits = torch.tensor(\n", | ||
" [[2.0, 1.0, 0.1],\n", | ||
" [0.5, 2.5, 0.3]]) # Shape: (2, 3)\n", | ||
"targets = torch.tensor([0, 2]) # Shape: (2,)\n", | ||
"# print(targets.unsqueeze(-1).shape)\n", | ||
"\n", | ||
"# Manual loss using torch.gather\n", | ||
"log_softmax_logits = F.log_softmax(logits, dim=1) # Shape: (2, 3)\n", | ||
"# print(log_softmax_logits)\n", | ||
"selected_log_probs = torch.gather(\n", | ||
" input=log_softmax_logits,\n", | ||
" dim=1,\n", | ||
" index=targets.unsqueeze(1), # Shape 2, 1\n", | ||
") # Shape: (2,)\n", | ||
"print(selected_log_probs,selected_log_probs.shape)\n", | ||
"print(selected_log_probs.squeeze(1),selected_log_probs.squeeze(1).shape)\n", | ||
"manual_loss = -selected_log_probs.mean() # Averaging over the batch\n", | ||
"\n", | ||
"\n", | ||
"# PyTorch loss\n", | ||
"cross_entropy_loss = F.cross_entropy(logits, targets)\n", | ||
"\n", | ||
"print(manual_loss, cross_entropy_loss)" | ||
], | ||
"metadata": { | ||
"collapsed": false, | ||
"ExecuteTime": { | ||
"end_time": "2024-08-12T10:05:21.666926700Z", | ||
"start_time": "2024-08-12T10:05:21.637344Z" | ||
} | ||
}, | ||
"id": "4b1f1f33b9e7f613" | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 2 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython2", | ||
"version": "2.7.6" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Empty file.