Skip to content

abdulrafae/coding_nmt

Repository files navigation

Coding Textual Inputs Boosts the Accuracy of Neural Networks

Abdul Rafae Khan+, Jia Xu+ & Weiwei Sun++

+ Stevens Institute of Technology

++ Cambridge University

(1) Coding Neural Machine Translation (NMT)

Install dependencies

Setup fairseq toolkit

git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable ./

# on MacOS:
# CFLAGS="-stdlib=libc++" pip install --editable ./

Install evaluation packages

pip install sacrebleu

Install tokenization packages

git clone https://github.com/moses-smt/mosesdecoder.git

Install Byte-pair Encoding pacakges

git clone https://github.com/rsennrich/subword-nmt.git

Download and Pre-process IWSLT'17 French-English data

Download and tokenize data

bash prepare_data.sh

Create Metaphone coded data

python phonetic_encoder.py --source fr --target en --input data/ --output data/ --coding metaphone --files train,valid,test
Use --coding metaphone,nysiis,soundex for multiple coding

Byte-pair encode the data

bash apply_bpe.sh fr mt en

Train NMT System

Train French+Metaphone-English Concatenation Model

bash train_concatenation.sh

or

Train French+Metaphone-English Multisource Model

bash train_multisource.sh

(2) Coding Language Modeling

Install dependencies

git clone https://github.com/facebookresearch/XLM.git

Download and Pre-process IWSLT'17 French-English data

Download and tokenize data

bash prepare_data.sh

Create vocabulary

OUTPATH=data/processed/XLM_en/30k
mkdir -p $OUTPATH

python utils/getvocab.py --input $OUTPATH/train.en --output $OUTPATH/vocab.en
python utils/getvocab.py --input $OUTPATH/train.ny --output $OUTPATH/vocab.ny
python utils/getvocab.py --input $OUTPATH/train.enny --output $OUTPATH/vocab.enny

Binarize data

python XLM/preprocess.py $OUTPATH/vocab.en $OUTPATH/train.en &
python XLM/preprocess.py $OUTPATH/vocab.en $OUTPATH/valid.en &
python XLM/preprocess.py $OUTPATH/vocab.en $OUTPATH/test.en &

python XLM/preprocess.py $OUTPATH/vocab.ny $OUTPATH/train.ny &
python XLM/preprocess.py $OUTPATH/vocab.ny $OUTPATH/valid.ny &
python XLM/preprocess.py $OUTPATH/vocab.ny $OUTPATH/test.ny &

python XLM/preprocess.py $OUTPATH/vocab.enny $OUTPATH/train.enny &
python XLM/preprocess.py $OUTPATH/vocab.enny $OUTPATH/valid.enny &
python XLM/preprocess.py $OUTPATH/vocab.enny $OUTPATH/test.enny &

mv $OUTPATH/train.enny.pth $OUTPATH/train.en-ny.pth
mv $OUTPATH/valid.enny.pth $OUTPATH/valid.en-ny.pth
mv $OUTPATH/test.enny.pth $OUTPATH/test.en-ny.pth

Train English baseline

CUDA_VISIBLE_DEVICES=0 python train.py --exp_name xlm_en --dump_path ./dumped_xlm_en --data_path $OUTPATH --lgs 'en' --clm_steps '' --mlm_steps 'en' --emb_dim 256 --n_layers 6 --n_heads 8 --dropout 0.1 --attention_dropout 0.1 --gelu_activation true --batch_size 32 --bptt 256 --optimizer adam_inverse_sqrt,lr=0.00010,warmup_updates=30000,beta1=0.9,beta2=0.999,weight_decay=0.01,eps=0.000001 --epoch_size 300000 --max_epoch 100000 --validation_metrics _valid_en_mlm_ppl --stopping_criterion _valid_en_mlm_ppl,25 --fp16 true --word_mask_keep_rand '0.8,0.1,0.1' --word_pred '0.15' 

Train English+NYSIIS

CUDA_VISIBLE_DEVICES=0 python train.py --exp_name xlm_en_ny --dump_path ./dumped_xlm_en_ny --data_path $OUTPATH --lgs 'en' --clm_steps '' --mlm_steps 'en,ny' --emb_dim 256 --n_layers 6 --n_heads 8 --dropout 0.1 --attention_dropout 0.1 --gelu_activation true --batch_size 32 --bptt 256 --optimizer adam_inverse_sqrt,lr=0.00010,warmup_updates=30000,beta1=0.9,beta2=0.999,weight_decay=0.01,eps=0.000001 --epoch_size 300000 --max_epoch 100000 --validation_metrics _valid_en_mlm_ppl --stopping_criterion _valid_en_mlm_ppl,25 --fp16 true --word_mask_keep_rand '0.8,0.1,0.1' --word_pred '0.15' 

Train English+NYSIIS+Word Alignment

CUDA_VISIBLE_DEVICES=0 python train.py --exp_name mlm_en_ny --dump_path ./dumped_mlm_en_ny --data_path $OUTPATH --lgs 'en' --clm_steps '' --mlm_steps 'en,ny,en-ny' --emb_dim 256 --n_layers 6 --n_heads 8 --dropout 0.1 --attention_dropout 0.1 --gelu_activation true --batch_size 32 --bptt 256 --optimizer adam_inverse_sqrt,lr=0.00010,warmup_updates=30000,beta1=0.9,beta2=0.999,weight_decay=0.01,eps=0.000001 --epoch_size 300000 --max_epoch 100000 --validation_metrics _valid_en_mlm_ppl --stopping_criterion _valid_en_mlm_ppl,25 --fp16 true --word_mask_keep_rand '0.8,0.1,0.1' --word_pred '0.15' 

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published