forked from maxpumperla/hyperas
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request maxpumperla#196 from amw5g/patch-1
Create simple_notebook_multiple_inputs.ipynb
- Loading branch information
Showing
1 changed file
with
77 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
from __future__ import print_function | ||
from hyperopt import Trials, STATUS_OK, tpe | ||
from hyperas import optim | ||
from hyperas.distributions import choice, uniform | ||
|
||
from keras.models import Model | ||
from keras.layers import Input, Dense, Dropout, concatenate, Activation | ||
from keras.optimizers import RMSprop | ||
|
||
from keras.datasets import mnist | ||
from keras.utils import np_utils | ||
import numpy | ||
|
||
def data(): | ||
''' | ||
Data providing function: | ||
This function is separated from model() so that hyperopt | ||
won't reload data for each evaluation run. | ||
''' | ||
(mnist_X_train, y_train), (mnist_X_test, y_test) = mnist.load_data() | ||
mnist_X_train = mnist_X_train.reshape(60000, 784) | ||
mnist_X_test = mnist_X_test.reshape(10000, 784) | ||
mnist_X_train = mnist_X_train.astype('float32') | ||
mnist_X_test = mnist_X_test.astype('float32') | ||
mnist_X_train /= 255 | ||
mnist_X_test /= 255 | ||
nb_classes = 10 | ||
Y_train = np_utils.to_categorical(y_train, nb_classes) | ||
Y_test = np_utils.to_categorical(y_test, nb_classes) | ||
X_train = {'x1': mnist_X_train, 'x2': numpy.flip(mnist_X_train, axis=1)} | ||
X_test = {'x1': mnist_X_test, 'x2': numpy.flip(mnist_X_test, axis=1)} | ||
return X_train, Y_train, X_test, Y_test | ||
|
||
|
||
def model(X_train, Y_train, X_test, Y_test): | ||
''' | ||
Model providing function: | ||
Create Keras model with double curly brackets dropped-in as needed. | ||
Return value has to be a valid python dictionary with two customary keys: | ||
- loss: Specify a numeric evaluation metric to be minimized | ||
- status: Just use STATUS_OK and see hyperopt documentation if not feasible | ||
The last one is optional, though recommended, namely: | ||
- model: specify the model just created so that we can later use it again. | ||
''' | ||
x1 = Input(shape=(784,), name='x1') | ||
dense_x1 = Dense(512)(x1) | ||
x2 = Input(shape=(784,), name='x2') | ||
dense_x2 = Dense(512)(x2) | ||
merged = concatenate([dense_x1, dense_x2]) | ||
merged = Activation('relu')(merged) | ||
merged = Dropout({{uniform(0, 1)}})(merged) | ||
merged = Dense({{choice([256, 512, 1024])}}, activation='relu')(merged) | ||
merged = Dropout({{uniform(0, 1)}})(merged) | ||
output = Dense(10, activation='softmax', name='output')(merged) | ||
model = Model(inputs=[x1, x2], outputs=[output]) | ||
|
||
rms = RMSprop() | ||
model.compile(loss='categorical_crossentropy', optimizer=rms, metrics=['accuracy']) | ||
|
||
model.fit({'x1': X_train['x1'], 'x2': X_train['x2']}, {'output': Y_train}, | ||
batch_size={{choice([64, 128])}}, | ||
epochs=1, | ||
verbose=2, | ||
validation_data=({'x1': X_test['x1'], 'x2': X_test['x2']}, {'output': Y_test})) | ||
score, acc = model.evaluate({'x1': X_test['x1'], 'x2': X_test['x2']}, {'output': Y_test}, verbose=0) | ||
print('Test accuracy:', acc) | ||
return {'loss': -acc, 'status': STATUS_OK, 'model': model} | ||
|
||
|
||
X_train, Y_train, X_test, Y_test = data() | ||
|
||
best_run, best_model = optim.minimize(model=model, | ||
data=data, | ||
algo=tpe.suggest, | ||
max_evals=5, | ||
trials=Trials(), | ||
notebook_name='simple_notebook') |