name: MXNet # name of the framework
version: 0.1 # framework version
container: # containers used to perform model prediction
# multiple platforms can be specified
amd64: # if unspecified, then the default container for the framework is used
gpu: raiproject/carml-mxnet:amd64-cpu
cpu: raiproject/carml-mxnet:amd64-gpu
ppc64le:
cpu: raiproject/carml-mxnet:ppc64le-gpu
gpu: raiproject/carml-mxnet:ppc64le-gpu
name: InceptionNet # name of your model
framework: # the framework to use
name: MXNet # framework for the model
version: ^0.1 # framework version constraint
version: 1.0 # version information in semantic version format
container: # containers used to perform model prediction
# multiple platforms can be specified
amd64: # if unspecified, then the default container for the framework is used
gpu: raiproject/carml-mxnet:amd64-cpu
cpu: raiproject/carml-mxnet:amd64-gpu
ppc64le:
cpu: raiproject/carml-mxnet:ppc64le-gpu
gpu: raiproject/carml-mxnet:ppc64le-gpu
description: >
An image-classification convolutional network.
Inception achieves 21.2% top-1 and 5.6% top-5 error on the ILSVRC 2012 validation dataset.
It consists of fewer than 25M parameters.
references: # references to papers / websites / etc.. describing the model
- https://arxiv.org/pdf/1512.00567.pdf
# license of the model
license: MIT
# inputs to the model
inputs:
# first input type for the model
- type: image
# description of the first input
description: the input image
parameters: # type parameters
dimensions: [1, 3, 224, 224]
output:
# the type of the output
type: feature
# a description of the output parameter
description: the output label
parameters:
# type parameters
features_url: http://data.dmlc.ml/mxnet/models/imagenet/synset.txt
before_preprocess: >
code...
preprocess: >
code...
after_preprocess: >
code...
before_postprocess: >
code...
postprocess: >
code...
after_postprocess: >
code...
model: # specifies model graph and weights resources
base_url: http://data.dmlc.ml/models/imagenet/inception-bn/
graph_path: Inception-BN-symbol.json
weights_path: Inception-BN-0126.params
is_archive: false # if set, then the base_url is a url to an archive
# the graph_path and weights_path then denote the
# file names of the graph and weights within the archive
attributes: # extra network attributes
kind: CNN # the kind of neural network (CNN, RNN, ...)
training_dataset: ImageNet # dataset used to for training
manifest_author: abduld
hidden: false # hide the model from the frontend