Skip to content
forked from ivalab/simData

The dataset of our RA-L work 'Learning Affordance Segmentation for Real-world Robotic Manipulation via Synthetic Images'

Notifications You must be signed in to change notification settings

acmiyaguchi/simData

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

simData

This is the dataset of our RA-L work 'Learning Affordance Segmentation for Real-world Robotic Manipulation via Synthetic Images'. The detector jointly learns detection and affordance map prediction in an unsupervised manner via synthetic data. The original paper can be found here. The final version will be updated after publication process.

drawing

If you find it helpful for your research, please consider citing:

@inproceedings{chu2019learning,
  title = {Learning Affordance Segmentation for Real-world Robotic Manipulation via Synthetic Images},
  author = {F. Chu and R. Xu and P. A. Vela},
  journal = {IEEE Robotics and Automation Letters},
  year = {2019},
  volume = {4},
  number = {2},
  pages = {1140-1147},
  DOI = {10.1109/LRA.2019.2894439},
  ISSN = {2377-3766},
  month = {April}
}

Usage

Please follow the instructions in Image Saver

This repo contains sketchup 3D models from 3D warehouse, compatible with UMD affordance dataset. This dataset is collected for simulation in Gazebo to automatically generate affordance annotations.

Download processed dataset

If you simply want to use the dataset directly:

Note: dataset with segmentation/classification/bounding box groundtruth in VOC2012 format

View in Gazebo (gui)

  1. put the .dae model under ~/.gazebo/models/MODEL_NAME/meshes/
  2. create a model.config as below in ~/.gazebo/models/MODEL_NAME/
<?xml version="1.0"?>
<model>
  <version>1.0</version>
  <name>scissors</name>
  <sdf version="1.4">model.sdf</sdf>

  <description>
    A model of for testing
  </description>
</model>
  1. create a model.sdf as below in ~/.gazebo/models/MODEL_NAME/
<?xml version='1.0'?>
<sdf version="1.4">
<model name="MODEL_NAME">
  <pose>0 0 0.0 0 0 0</pose>
  <static>true</static>
    <link name="link">
      <inertial>
        <mass>1.0</mass>
        <inertia> <!-- inertias are tricky to compute -->
          <!-- http://gazebosim.org/tutorials?tut=inertia&cat=build_robot -->
          <ixx>0.083</ixx>       <!-- for a box: ixx = 0.083 * mass * (y*y + z*z) -->
          <ixy>0.0</ixy>         <!-- for a box: ixy = 0 -->
          <ixz>0.0</ixz>         <!-- for a box: ixz = 0 -->
          <iyy>0.083</iyy>       <!-- for a box: iyy = 0.083 * mass * (x*x + z*z) -->
          <iyz>0.0</iyz>         <!-- for a box: iyz = 0 -->
          <izz>0.083</izz>       <!-- for a box: izz = 0.083 * mass * (x*x + y*y) -->
        </inertia>
      </inertial>
      <collision name="collision">
        <geometry>
          <box>
            <size>1 1 1</size>
          </box>
        </geometry>
      </collision>
      <visual name="visual">
        <geometry>
          <mesh>
            <uri>model://MODEL_NAME/meshes/model.dae</uri>
            <scale>0.001 0.001 0.001</scale>
          </mesh>
        </geometry>
      </visual>
    </link>
  </model>
</sdf>
  1. open Gazebo roscore & rosrun gazebo_ros gazebo and you can insert the model

Add/Delete in Gazebo (script)

  1. follow step 1&2&3 as above to prepare the model
  2. open an empty world roscore & rosrun gazebo_ros gazebo
  3. add model
rosrun gazebo_ros spawn_model -sdf -z 1 -file /home/USERNAME/.gazebo/models/MODEL_NAME/model.sdf -model MODEL_NAME
  1. delete model
rosservice call gazebo/delete_model '{model_name: MODEL_NAME}'

arg in spawn_model can be used to specify 6DOF of the position for placing

Connect ROS to Gazebo kinect

please follow this post

Contact

If you encounter any questions, please contact me at fujenchu[at]gatech[dot]edu

About

The dataset of our RA-L work 'Learning Affordance Segmentation for Real-world Robotic Manipulation via Synthetic Images'

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 56.1%
  • CMake 43.9%