Get up and running with large language models locally.
curl -fsSL https://ollama.com/install.sh | sh
The official Ollama Docker image ollama/ollama
is available on Docker Hub.
To run and chat with Llama 2:
ollama run llama2
Ollama supports a list of models available on ollama.com/library
Here are some example models that can be downloaded:
Model | Parameters | Size | Download |
---|---|---|---|
Llama 2 | 7B | 3.8GB | ollama run llama2 |
Mistral | 7B | 4.1GB | ollama run mistral |
Dolphin Phi | 2.7B | 1.6GB | ollama run dolphin-phi |
Phi-2 | 2.7B | 1.7GB | ollama run phi |
Neural Chat | 7B | 4.1GB | ollama run neural-chat |
Starling | 7B | 4.1GB | ollama run starling-lm |
Code Llama | 7B | 3.8GB | ollama run codellama |
Llama 2 Uncensored | 7B | 3.8GB | ollama run llama2-uncensored |
Llama 2 13B | 13B | 7.3GB | ollama run llama2:13b |
Llama 2 70B | 70B | 39GB | ollama run llama2:70b |
Orca Mini | 3B | 1.9GB | ollama run orca-mini |
Vicuna | 7B | 3.8GB | ollama run vicuna |
LLaVA | 7B | 4.5GB | ollama run llava |
Gemma | 2B | 1.4GB | ollama run gemma:2b |
Gemma | 7B | 4.8GB | ollama run gemma:7b |
Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
Ollama supports importing GGUF models in the Modelfile:
-
Create a file named
Modelfile
, with aFROM
instruction with the local filepath to the model you want to import.FROM ./vicuna-33b.Q4_0.gguf
-
Create the model in Ollama
ollama create example -f Modelfile
-
Run the model
ollama run example
See the guide on importing models for more information.
Models from the Ollama library can be customized with a prompt. For example, to customize the llama2
model:
ollama pull llama2
Create a Modelfile
:
FROM llama2
# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""
Next, create and run the model:
ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.
For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.
ollama create
is used to create a model from a Modelfile.
ollama create mymodel -f ./Modelfile
ollama pull llama2
This command can also be used to update a local model. Only the diff will be pulled.
ollama rm llama2
ollama cp llama2 my-llama2
For multiline input, you can wrap text with """
:
>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.
>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.
$ ollama run llama2 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
ollama list
ollama serve
is used when you want to start ollama without running the desktop application.
Install cmake
and go
:
brew install cmake go
Then generate dependencies:
go generate ./...
Then build the binary:
go build .
More detailed instructions can be found in the developer guide
Next, start the server:
./ollama serve
Finally, in a separate shell, run a model:
./ollama run llama2
Ollama has a REST API for running and managing models.
curl http://localhost:11434/api/generate -d '{
"model": "llama2",
"prompt":"Why is the sky blue?"
}'
curl http://localhost:11434/api/chat -d '{
"model": "mistral",
"messages": [
{ "role": "user", "content": "why is the sky blue?" }
]
}'
See the API documentation for all endpoints.
- Bionic GPT
- HTML UI
- Chatbot UI
- Typescript UI
- Minimalistic React UI for Ollama Models
- Open WebUI
- Ollamac
- big-AGI
- Cheshire Cat assistant framework
- Amica
- chatd
- Ollama-SwiftUI
- MindMac
- NextJS Web Interface for Ollama
- Msty
- oterm
- Ellama Emacs client
- Emacs client
- gen.nvim
- ollama.nvim
- ollama-chat.nvim
- ogpt.nvim
- gptel Emacs client
- Oatmeal
- cmdh
- tenere
- llm-ollama for Datasette's LLM CLI.
- ShellOracle
- LangChain and LangChain.js with example
- LangChainGo with example
- LlamaIndex
- LangChain4j
- LiteLLM
- OllamaSharp for .NET
- Ollama for Ruby
- Ollama-rs for Rust
- Ollama4j for Java
- ModelFusion Typescript Library
- OllamaKit for Swift
- Ollama for Dart
- Ollama for Laravel
- LangChainDart
- Semantic Kernel - Python
- Haystack
- Elixir LangChain
- Ollama for R - rollama
- Ollama-ex for Elixir
- Raycast extension
- Discollama (Discord bot inside the Ollama discord channel)
- Continue
- Obsidian Ollama plugin
- Logseq Ollama plugin
- Dagger Chatbot
- Discord AI Bot
- Ollama Telegram Bot
- Hass Ollama Conversation
- Rivet plugin
- Llama Coder (Copilot alternative using Ollama)
- Obsidian BMO Chatbot plugin
- Obsidian Local GPT plugin
- Open Interpreter
- twinny (Copilot and Copilot chat alternative using Ollama)
- Wingman-AI (Copilot code and chat alternative using Ollama and HuggingFace)
- Page Assist (Chrome Extension)