Skip to content

Implementation of paper "PHiFL-TL: Personalized Hierarchical Federated Learning using Transfer Learning"

Notifications You must be signed in to change notification settings

afAfzali/PHiFL-TL

Repository files navigation

Implementation of the algorithm presented in the paper titled "PHiFL-TL: Personalized Hierarchical Federated Learning using Transfer Learning" with Tensorflow.

  • Here is one example to run this code (IID MNIST Scenario):

      dataset="mnist"
      flag1=1
      model="cnn1"  
      batch_size=32
      communication_round=6          
      epochs=20                         
      num_edge_aggregation=4           
      num_edges=3   
      num_clients=30 
      fraction_clients=0.5              
      lr=0.01      
      val_ratio=0.1     
      image_shape=(28,28,1)
      lr=0.00001      # for Transfer learning phase
    
  • Here is one example to run this code (non-IID MNIST Scenario):

      dataset="mnist"
      flag1=3
      k1=4
      k2=2
      model="cnn1"  
      batch_size=32
      communication_round=6          
      epochs=20                         
      num_edge_aggregation=4           
      num_edges=3   
      num_clients=30 
      fraction_clients=0.5              
      lr=0.01
      val_ratio=0.1     
      image_shape=(28,28,1)
      lr=0.00001      # for Transfer learning phase
    
  • Here is one example to run this code (non-IID FEMNIST Scenario):

      dataset="femnist"
      num_labels=20   # number classes of 62 classes  
      train_size=21000
      test_size=9000 
      label_reduce=12
      model="cnn1"  
      batch_size=32
      communication_round=6          
      epochs=20                         
      num_edge_aggregation=4           
      num_edges=3   
      num_clients=30 
      fraction_clients=0.5              
      lr=0.01
      val_ratio=0.25     
      image_shape=(28,28,1)
      lr=0.001      # for Transfer learning phase
    

Notice: You need to create the following folders where the program is located: results\global_models, results\edges_models\itr_i (i : 1 to communication_round) and results\fig.

Citation

If you find this repository useful, please cite our paper:

@article{afzali2024phifl,
  title={PHiFL-TL: Personalized Hierarchical Federated Learning using Transfer Learning},
  author={Afzali, Afsaneh and Shamsinejadbabaki, Pirooz},
  journal={Future Generation Computer Systems},
  pages={107672},
  year={2024},
  publisher={Elsevier},
  doi={10.1016/j.future.2024.107672},
}

About

Implementation of paper "PHiFL-TL: Personalized Hierarchical Federated Learning using Transfer Learning"

Resources

Stars

Watchers

Forks

Releases

No releases published

Languages